scholarly journals CD40 Ligand Deficiency Attenuates Angiotensin II Induced Oxidative Stress and Endothelial Dysfunction in a Murine Model of Arterial Hypertension

2012 ◽  
Vol 102 (3) ◽  
pp. 66a
Author(s):  
Michael Hausding ◽  
Swenja Kröller-Schön ◽  
Matthias Oelze ◽  
Steffen Daub ◽  
Thomas Münzel ◽  
...  
2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Steffen Daub ◽  
Michael Hausding ◽  
Kerstin Jurk ◽  
Christian Becker ◽  
Swenja Kroeller‐Schoen ◽  
...  

2013 ◽  
Vol 34 (suppl 1) ◽  
pp. P4158-P4158
Author(s):  
M. Hausding ◽  
K. Jurk ◽  
C. Becker ◽  
S. Daub ◽  
S. Kroeller-Schoen ◽  
...  

2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Frank M. Faraci ◽  
Dale Kinzenbaw ◽  
Laura I. Schrader ◽  
Sean P. Didion

2008 ◽  
Vol 295 (4) ◽  
pp. F1134-F1141 ◽  
Author(s):  
Laura G. Sánchez-Lozada ◽  
Virgilia Soto ◽  
Edilia Tapia ◽  
Carmen Avila-Casado ◽  
Yuri Y. Sautin ◽  
...  

Endothelial dysfunction is a characteristic feature during the renal damage induced by mild hyperuricemia. The mechanism by which uric acid reduces the bioavailability of intrarenal nitric oxide is not known. We tested the hypothesis that oxidative stress might contribute to the endothelial dysfunction and glomerular hemodynamic changes that occur with hyperuricemia. Hyperuricemia was induced in Sprague-Dawley rats by administration of the uricase inhibitor, oxonic acid (750 mg/kg per day). The superoxide scavenger, tempol (15 mg/kg per day), or placebo was administered simultaneously with the oxonic acid. All groups were evaluated throughout a 5-wk period. Kidneys were fixed by perfusion and afferent arteriole morphology, and tubulointerstitial 3-nitrotyrosine, 4-hydroxynonenal, NOX-4 subunit of renal NADPH-oxidase, and angiotensin II were quantified. Hyperuricemia induced intrarenal oxidative stress, increased expression of NOX-4 and angiotensin II, and decreased nitric oxide bioavailability, systemic hypertension, renal vasoconstriction, and afferent arteriolopathy. Tempol treatment reversed the systemic and renal alterations induced by hyperuricemia despite equivalent hyperuricemia. Moreover, because tempol prevented the development of preglomerular damage and decreased blood pressure, glomerular pressure was maintained at normal values as well. Mild hyperuricemia induced by uricase inhibition causes intrarenal oxidative stress, which contributes to the development of the systemic hypertension and the renal abnormalities induced by increased uric acid. Scavenging of the superoxide anion in this setting attenuates the adverse effects induced by hyperuricemia.


2019 ◽  
Vol 316 (3) ◽  
pp. H639-H646 ◽  
Author(s):  
Sergey Dikalov ◽  
Hana Itani ◽  
Bradley Richmond ◽  
Liaison Arslanbaeva ◽  
Aurelia Vergeade ◽  
...  

Tobacco smoking is a major risk factor for cardiovascular disease and hypertension. It is associated with the oxidative stress and induces metabolic reprogramming, altering mitochondrial function. We hypothesized that cigarette smoke induces cardiovascular mitochondrial oxidative stress, which contributes to endothelial dysfunction and hypertension. To test this hypothesis, we studied whether the scavenging of mitochondrial H2O2 in transgenic mice expressing mitochondria-targeted catalase (mCAT) attenuates the development of cigarette smoke/angiotensin II-induced mitochondrial oxidative stress and hypertension compared with wild-type mice. Two weeks of exposure of wild-type mice with cigarette smoke increased systolic blood pressure by 17 mmHg, which was similar to the effect of a subpresssor dose of angiotensin II (0.2 mg·kg−1·day−1), leading to a moderate increase to the prehypertensive level. Cigarette smoke exposure and a low dose of angiotensin II cooperatively induced severe hypertension in wild-type mice, but the scavenging of mitochondrial H2O2 in mCAT mice completely prevented the development of hypertension. Cigarette smoke and angiotensin II cooperatively induced oxidation of cardiolipin (a specific biomarker of mitochondrial oxidative stress) in wild-type mice, which was abolished in mCAT mice. Cigarette smoke and angiotensin II impaired endothelium-dependent relaxation and induced superoxide overproduction, which was diminished in mCAT mice. To mimic the tobacco smoke exposure, we used cigarette smoke condensate, which induced mitochondrial superoxide overproduction and reduced endothelial nitric oxide (a hallmark of endothelial dysfunction in hypertension). Western blot experiments indicated that tobacco smoke and angiotensin II reduce the mitochondrial deacetylase sirtuin-3 level and cause hyperacetylation of a key mitochondrial antioxidant, SOD2, which promotes mitochondrial oxidative stress. NEW & NOTEWORTHY This work demonstrates tobacco smoking-induced mitochondrial oxidative stress, which contributes to endothelial dysfunction and development of hypertension. We suggest that the targeting of mitochondrial oxidative stress can be beneficial for treatment of pathological conditions associated with tobacco smoking, such as endothelial dysfunction, hypertension, and cardiovascular diseases. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/mitochondrial-oxidative-stress-in-smoking-and-hypertension/ .


2017 ◽  
Vol 40 (12) ◽  
pp. 966-975 ◽  
Author(s):  
Zahid Rasul Niazi ◽  
Grazielle C Silva ◽  
Thais Porto Ribeiro ◽  
Antonio J León-González ◽  
Mohamad Kassem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document