scholarly journals Transmural Differences in Preload-Dependency of CA2+ Transients in Isolated Cardiomyocytes

2016 ◽  
Vol 110 (3) ◽  
pp. 99a
Author(s):  
Anastasia Khokhlova ◽  
Gentaro Iribe ◽  
Olga Solovyova
2012 ◽  
Vol 66 (2) ◽  
pp. 168-169
Author(s):  
Maaike Peschar ◽  
L. Nalos ◽  
R. Varkevisser ◽  
T.A.B. van Veen ◽  
M.J.C. Houtman ◽  
...  

2021 ◽  
pp. 096032712110228
Author(s):  
AA Hafez ◽  
Z Jamali ◽  
S Samiei ◽  
S Khezri ◽  
A Salimi

Doxorubicin (DOX) is an anticancer drug which is used for treatment of several types of cancers. But the clinical use of doxorubicin is limited because of its cardiotoxicity and cardiomyopathy. Mitochondrial-dependent oxidative stress and cardiac inflammation appear to be involved in doxorubicin-induced cardiotoxicity. Betanin as a bioactive compound in Beetroot ( Beta vulgaris L.) displays anti-radical, antioxidant gene regulatory and cardioprotective activities. In this current study, we investigated the protective effect of betanin on doxorubicin-induced cytotoxicity and mitochondrial-dependent oxidative stress in isolated cardiomyocytes and mitochondria. Isolated cardiomyocytes and mitochondria were treated with three concentrations of betanin (1, 5 and 10 µM) and doxorubicin (3.5 µM) for 6 h. The parameters of cellular and mitochondrial toxicity were analyzed using biochemical and flow cytometric methods. Our results showed a significant toxicity in isolated cardiomyocytes and mitochondria in presence of doxorubicin which was related to reactive oxygen species (ROS) formation, increase in malondialdehyde (MDA), increase in oxidation of GSH to GSSG, lysosomal/mitochondrial damages and mitochondrial swelling. While betanin pretreatment reverted doxorubicin-induced cytotoxicity and oxidative stress in isolated cardiomyocytes and mitochondria. These results suggest that betanin elicited a typical protective effect on doxorubicin-induced cytotoxicity and oxidative stress. It is possible that betanin could be used as a useful adjuvant in combination with doxorubicin chemotherapy for reduction of cardiotoxicity and cardiomyopathy.


2017 ◽  
Vol 280 ◽  
pp. 151-158 ◽  
Author(s):  
Lama Fawaz Pharaon ◽  
Naglaa Fathi El-Orabi ◽  
Muhammad Kunhi ◽  
Nadya Al Yacoub ◽  
Salma Mahmoud Awad ◽  
...  

2014 ◽  
Vol 307 (10) ◽  
pp. C910-C919 ◽  
Author(s):  
Juan C. Benech ◽  
Nicolás Benech ◽  
Ana I. Zambrana ◽  
Inés Rauschert ◽  
Verónica Bervejillo ◽  
...  

Stiffness of live cardiomyocytes isolated from control and diabetic mice was measured using the atomic force microscopy nanoindentation method. Type 1 diabetes was induced in mice by streptozotocin administration. Histological images of myocardium from mice that were diabetic for 3 mo showed disorderly lineup of myocardial cells, irregularly sized cell nuclei, and fragmented and disordered myocardial fibers with interstitial collagen accumulation. Phalloidin-stained cardiomyocytes isolated from diabetic mice showed altered (i.e., more irregular and diffuse) actin filament organization compared with cardiomyocytes from control mice. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) pump expression was reduced in homogenates obtained from the left ventricle of diabetic animals compared with age-matched controls. The apparent elastic modulus (AEM) for live control or diabetic isolated cardiomyocytes was measured using the atomic force microscopy nanoindentation method in Tyrode buffer solution containing 1.8 mM Ca2+ and 5.4 mM KCl (physiological condition), 100 nM Ca2+ and 5.4 mM KCl (low extracellular Ca2+ condition), or 1.8 mM Ca2+ and 140 mM KCl (contraction condition). In the physiological condition, the mean AEM was 112% higher for live diabetic than control isolated cardiomyocytes (91 ± 14 vs. 43 ± 7 kPa). The AEM was also significantly higher in diabetic than control cardiomyocytes in the low extracellular Ca2+ and contraction conditions. These findings suggest that the material properties of live cardiomyocytes were affected by diabetes, resulting in stiffer cells, which very likely contribute to high diastolic LV stiffness, which has been observed in vivo in some diabetes mellitus patients.


2010 ◽  
Vol 196 ◽  
pp. S142
Author(s):  
L.G. Rossato ◽  
V.M. Costa ◽  
P.G. Pinho ◽  
F. Carvalho ◽  
H. Carmo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document