scholarly journals Molecular Level Insight into a Unique Surface Protein Glycosylation Pathway: Structure of the Actinomyces Oris LCP Enzyme that Mediates Surface Protein Glycosylation

2017 ◽  
Vol 112 (3) ◽  
pp. 344a
Author(s):  
Brendan R. Amer ◽  
Michael R. Sawaya ◽  
Brandon Liauw ◽  
Janine Fu ◽  
Hung Ton-That ◽  
...  
2021 ◽  
Vol 7 (8) ◽  
pp. eabe3610
Author(s):  
Conor J. Kearney ◽  
Stephin J. Vervoort ◽  
Kelly M. Ramsbottom ◽  
Izabela Todorovski ◽  
Emily J. Lelliott ◽  
...  

Multimodal single-cell RNA sequencing enables the precise mapping of transcriptional and phenotypic features of cellular differentiation states but does not allow for simultaneous integration of critical posttranslational modification data. Here, we describe SUrface-protein Glycan And RNA-seq (SUGAR-seq), a method that enables detection and analysis of N-linked glycosylation, extracellular epitopes, and the transcriptome at the single-cell level. Integrated SUGAR-seq and glycoproteome analysis identified tumor-infiltrating T cells with unique surface glycan properties that report their epigenetic and functional state.


Author(s):  
Tian Wu ◽  
Danyan Hu ◽  
Qingfen Wang

Abstract Background Noni (Morinda citrifolia Linn.) is a tropical tree that bears climacteric fruit. Previous observations and research have shown that the second day (2 d) after harvest is the most important demarcation point when the fruit has the same appearance as the freshly picked fruit (0 d); however, they are beginning to become water spot appearance. We performed a conjoint analysis of metabolome and transcriptome data for noni fruit of 0 d and 2 d to reveal what happened to the fruit at the molecular level. Genes and metabolites were annotated to KEGG pathways and the co-annotated KEGG pathways were used as a statistical analysis. Results We found 25 pathways that were significantly altered at both metabolic and transcriptional levels, including a total of 285 differentially expressed genes (DEGs) and 11 differential metabolites through an integrative analysis of transcriptomics and metabolomics. The energy metabolism and pathways originating from phenylalanine were disturbed the most. The upregulated resistance metabolites and genes implied the increase of resistance and energy consumption in the postharvest noni fruit. Most genes involved in glycolysis were downregulated, further limiting the available energy. This lack of energy led noni fruit to water spot appearance, a prelude to softening. The metabolites and genes related to the resistance and energy interacted and restricted each other to keep noni fruit seemingly hard within two days after harvest, but actually the softening was already unstoppable. Conclusions This study provides a new insight into the relationship between the metabolites and genes of noni fruit, as well as a foundation for further clarification of the post-ripening mechanism in noni fruit.


Author(s):  
Li Zhang ◽  
Ya‐Ling Ye ◽  
Xiao‐Ling Zhang ◽  
Xiang‐Hui Li ◽  
Qiao‐Hong Chen ◽  
...  

2021 ◽  
Author(s):  
Martin Pabst ◽  
Denis S. Grouzdev ◽  
Christopher E. Lawson ◽  
Hugo B. C. Kleikamp ◽  
Carol de Ram ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ani Grigorian ◽  
Michael Demetriou

Multiple sclerosis (MS) is an inflammatory demyelinating and neurodegenerative disease initiated by autoreactive T cells. Mgat5, a gene in the Asn (N-) linked protein glycosylation pathway, associates with MS severity and negatively regulates experimental autoimmune encephalomyelitis (EAE) and spontaneous inflammatory demyelination in mice. N-glycan branching by Mgat5 regulates interaction of surface glycoproteins with galectins, forming a molecular lattice that differentially controls the concentration of surface glycoproteins. T-cell receptor signaling, T-cell proliferation, TH1 differentiation, and CTLA-4 endocytosis are inhibited by Mgat5 branching. Non-T cells also contribute to MS pathogenesis and express abundant Mgat5 branched N-glycans. Here we explore whether Mgat5 deficiency in myelin-reactive T cells is sufficient to promote demyelinating disease. Adoptive transfer of myelin-reactive Mgat5−/− T cells into Mgat5+/+ versus Mgat5−/− recipients revealed more severe EAE in the latter, suggesting that Mgat5 branching deficiency in recipient naive T cells and/or non-T cells contribute to disease pathogenesis.


Chem ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 613-625 ◽  
Author(s):  
Yuhan Peng ◽  
Liangbing Wang ◽  
Qiquan Luo ◽  
Yun Cao ◽  
Yizhou Dai ◽  
...  

2019 ◽  
Vol 75 (a1) ◽  
pp. a268-a268
Author(s):  
Aparna Annamraju ◽  
Nicholas D. Smith ◽  
Loukas Petridis ◽  
Hugh O'Neill ◽  
Sai Venkatesh Pingali ◽  
...  

Author(s):  
Ellis C. O'Neill ◽  
Sakonwan Kuhaudomlarp ◽  
Martin Rejzek ◽  
Jonatan U. Fangel ◽  
Kathirvel Alagesan ◽  
...  

Euglena gracilis is an alga of great biotechnological interest and extensive metabolic capacity, able to make high levels of bioactive compounds, such as polyunsaturated fatty acids, vitamins and β-glucan. Previous work has shown that Euglena expresses a wide range of carbohydrate-active enzymes, suggesting an unexpectedly high capacity for the synthesis of complex carbohydrates for a single celled organism. Here we present an analysis of some of the carbohydrates synthesised by Euglena gracilis. Analysis of the sugar nucleotide pool showed that there are the substrates necessary for synthesis of complex polysaccharides, including the unusual sugar galactofuranose. Lectin- and antibody-based profiling of whole cells and extracted carbohydrates revealed a complex galactan, xylan and aminosugar based surface. Protein N-glycan profiling, however, indicated that just simple high mannose-type glycans are present and that they are partially modified with putative aminoethylphosphonate moieties. Together, these data indicate that Euglena possesses a complex glycan surface, unrelated to plant cell walls, while its’ protein glycosylation is simple. Taken together, these findings suggest that Euglena gracilis may lend itself to production of pharmaceutical glycoproteins.


Sign in / Sign up

Export Citation Format

Share Document