scholarly journals Increased Non-Uniformity in In Vivo Sarcomere Length during a Tetanic Contraction

2017 ◽  
Vol 112 (3) ◽  
pp. 115a
Author(s):  
Eng Kuan Moo ◽  
Timothy R. Leonard ◽  
Walter Herzog
Spine ◽  
2011 ◽  
Vol 36 (26) ◽  
pp. E1666-E1674 ◽  
Author(s):  
Gilad J. Regev ◽  
Choll W. Kim ◽  
Akihito Tomiya ◽  
Yu Po Lee ◽  
Hossein Ghofrani ◽  
...  

1997 ◽  
Vol 272 (5) ◽  
pp. H2107-H2114 ◽  
Author(s):  
D. C. Poole ◽  
T. I. Musch ◽  
C. A. Kindig

As muscles are stretched, blood flow and oxygen delivery are compromised, and consequently muscle function is impaired. We tested the hypothesis that the structural microvascular sequellae associated with muscle extension in vivo would impair capillary red blood cell hemodynamics. We developed an intravital spinotrapezius preparation that facilitated direct on-line measurement and alteration of sarcomere length simultaneously with determination of capillary geometry and red blood cell flow dynamics. The range of spinotrapezius sarcomere lengths achievable in vivo was 2.17 +/- 0.05 to 3.13 +/- 0.11 microns. Capillary tortuosity decreased systematically with increases of sarcomere length up to 2.6 microns, at which point most capillaries appeared to be highly oriented along the fiber longitudinal axis. Further increases in sarcomere length above this value reduced mean capillary diameter from 5.61 +/- 0.03 microns at 2.4-2.6 microns sarcomere length to 4.12 +/- 0.05 microns at 3.2-3.4 microns sarcomere length. Over the range of physiological sarcomere lengths, bulk blood flow (radioactive microspheres) decreased approximately 40% from 24.3 +/- 7.5 to 14.5 +/- 4.6 ml.100 g-1.min-1. The proportion of continuously perfused capillaries, i.e., those with continuous flow throughout the 60-s observation period, decreased from 95.9 +/- 0.6% at the shortest sarcomere lengths to 56.5 +/- 0.7% at the longest sarcomere lengths and was correlated significantly with the reduced capillary diameter (r = 0.711, P < 0.01; n = 18). We conclude that alterations in capillary geometry and luminal diameter consequent to increased muscle sarcomere length are associated with a reduction in mean capillary red blood cell velocity and a greater proportion of capillaries in which red blood cell flow is stopped or intermittent. Thus not only does muscle stretching reduce bulk blood (and oxygen) delivery, it also alters capillary red blood cell flow dynamics, which may further impair blood-tissue oxygen exchange.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Patrizia Camelliti ◽  
Gil Bub ◽  
Daniel J Stuckey ◽  
Christian Bollensdorff ◽  
Damian J Tyler ◽  
...  

Sarcomere length (SL) is a fundamental parameter underlying the Frank Starling relation in the heart, as it offers an absolute representation of myocardial stretch. Previous studies addressed the Frank Starling relation by measuring SL in isolated myocytes or muscle strips. Here, we report first data obtained using a novel technique to measure sub-epicardial SL in perfused hearts. Rat hearts were Langendorff perfused (normal Tyrode solution) at a constant pressure of 90mmHg, labeled with the fluorescent membrane marker di-4-ANEPPS, and then arrested with high-K + Tyrode for either 2-photon microscopy (n=4) or MRI (n=4). Image analysis software was developed to extract SL at the cell level from >1,400 2-photon images (Fig 1 ) and correct for cell angle. SL increased by 10±2 % between 30 and 80 min of perfusion (1.98±0.04 to 2.17±0.03 μm; p<0.05; Fig 1 ). Measurements of left ventricular myocardial volume (LVMV) were made in vivo and in perfused hearts using 3D MRI. LVMV increased by 24±7% from in vivo to 30 min of perfusion, and by 11±3 % between 30 and 90 min (539±35; 664±44; 737±49 mm 3 , respectively; p<0.05; Fig 1 ). We show that SL can be measured in isolated perfused hearts. The method allowed monitoring of changes in SL over time, and showed that SL and LVMV increase to a similar extent during 30–80 min perfusion with crystalloid solution, probably due to tissue oedema. This result, together with the increase in LVMV during the first 30 min, highlights the pronounced differences between in vivo , in situ , and in vitro model systems for studies of cardiac physiology and mechanics. Future research will compare changes in SL in healthy hearts and disease models involving contractile dysfunction. Figure 1: Left: 2-photon microscopy image of di-4-ANEPPS labeled myocardium. Right: SL and LVMV changes over time.


2017 ◽  
Vol 112 (4) ◽  
pp. 805-812 ◽  
Author(s):  
Kevin W. Young ◽  
Bill P.-P. Kuo ◽  
Shawn M. O’Connor ◽  
Stojan Radic ◽  
Richard L. Lieber

1990 ◽  
Vol 40 (1) ◽  
pp. 63-72 ◽  
Author(s):  
C.G. Ellis ◽  
O. Mathieu-Costello ◽  
R.F. Potter ◽  
I.C. MacDonald ◽  
A.C. Groom

BioTechniques ◽  
2020 ◽  
Vol 69 (5) ◽  
pp. 388-391
Author(s):  
Karla P Garcia-Pelagio ◽  
Stephen JP Pratt ◽  
Richard M Lovering

Isolated myofibers are commonly used to understand the function of skeletal muscle in vivo. This can involve single isolated myofibers obtained from dissection or from enzymatic dissociation. Isolation via dissection allows control of sarcomere length and preserves tendon attachment but is labor-intensive, time-consuming and yields few viable myofibers. In contrast, enzymatic dissociation is fast and facile, produces hundreds of myofibers, and more importantly reduces the number of muscles/animals needed for studies. Biomechanical properties of the sarcolemma have been studied using myofibers from the extensor digitorum longus, but this has been limited to dissected myofibers, making data collection slow and difficult. We have modified this tool to perform biomechanical measurements of the sarcolemma in dissociated myofibers from the flexor digitorum brevis.


1967 ◽  
Vol 33 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Philip W. Brandt ◽  
Enrique Lopez ◽  
John P. Reuben ◽  
Harry Grundfest

In cross-sections of single fibers from the frog semitendinosus muscle the number of thick myofilaments per unit area (packing density) is a direct function of the sarcomere length. Our data, derived from electron microscopic studies, fit well with other data derived from in vivo, low-angle X-ray diffraction studies of whole semitendinosus muscles. The data are consistent with the assumption that the sarcomere of a fibril maintains a constant volume during changes in sarcomere length. The myofilament lattice, therefore, expands as the sarcomere shortens. Since the distance between adjacent myofilaments is an inverse square root function of sarcomere length, the interaction of the thick and the thin myofilaments during sarcomere shortening may occur over distances which increase 70 A or more. The "expanding-sarcomere, sliding-filament" model of sarcomere shortening is discussed in terms of the current concepts of muscle architecture and contraction.


1995 ◽  
Vol 198 (2) ◽  
pp. 503-506
Author(s):  
R James ◽  
I Young ◽  
J Altringham

The errors likely to result from using excised rigor muscles to determine in vivo sarcomere length ranges were calculated for mouse extensor digitorum longus muscle (EDL). This muscle was chosen because its very long tendon makes it particularly susceptible to errors arising from tendon compliance. By placing dissected limbs into different locomotory stances, and allowing them to go into rigor, the range of sarcomere lengths over which muscles operate in vivo can be determined, but it is subject to errors due to tendon compliance. A tendon compliance of 0.24 GPa and a muscle rigor stress of 35 kPa were determined, and these were used to correct the estimates of in vivo sarcomere length, under worst case conditions. The error introduced was very small: a reduction in sarcomere length of less than 0.5 %.


Author(s):  
M. Sierra ◽  
M.J. Muñoz ◽  
J. Grasa

The main objective of this work is to characterize the fatigue contractile properties of threedifferent rat muscles (Tibialis Anterior, Extensor Digitorium Longus and Soleus) in order toobtain experimental parameters for numerical simulations.Experiments were conducted “in vivo" on three groups (n = 6) of male Wistar rats (210 +/- 11g)using a protocol developed by authors in previous works. Muscles were subjected to anelectrical stimulus to achieve tetanic contraction during ten seconds. Digital Image Correlationwas used during tests for 3D strain and displacements measurement that allow the correlationwith the finite element simulations.By means of Computed Tomography, a precise reconstruction of both bone and muscle of therat hindlimb geometry was obtained. The methodology proposed allows to obtain and validatecomputational simulations of skeletal muscle fatigue under different characteristics related tofiber types.63


Sign in / Sign up

Export Citation Format

Share Document