scholarly journals Combined Effects of Gap Junctional and Ephaptic Coupling Therapies on Conduction and Arrhythmogenesis during Ischemia/Reperfusion

2018 ◽  
Vol 114 (3) ◽  
pp. 623a ◽  
Author(s):  
Gregory S. Hoeker ◽  
Carissa C. James ◽  
Sarah H. Barrett ◽  
James W. Smyth ◽  
Steven Poelzing
2018 ◽  
Vol 33 (3) ◽  
pp. 197-206
Author(s):  
Pablo Cambeses Souza ◽  
Emanuel Burck dos Santos ◽  
Guilherme Lang Motta ◽  
Silvia Regina Bona ◽  
Pedro Guilherme Schaefer ◽  
...  

2016 ◽  
Vol 195 (4S) ◽  
Author(s):  
Young Seop Chang ◽  
Hong Wook Kim ◽  
Karl-Erik Andersson ◽  
ki hak Song ◽  
Yong Gil Na ◽  
...  

Author(s):  
D. Ryan King ◽  
Michael Entz ◽  
Grace A. Blair ◽  
Ian Crandell ◽  
Alexandra L. Hanlon ◽  
...  

Abstract The relationship between cardiac conduction velocity (CV) and extracellular potassium (K+) is biphasic, with modest hyperkalemia increasing CV and severe hyperkalemia slowing CV. Recent studies from our group suggest that elevating extracellular sodium (Na+) and calcium (Ca2+) can enhance CV by an extracellular pathway parallel to gap junctional coupling (GJC) called ephaptic coupling that can occur in the gap junction adjacent perinexus. However, it remains unknown whether these same interventions modulate CV as a function of K+. We hypothesize that Na+, Ca2+, and GJC can attenuate conduction slowing consequent to severe hyperkalemia. Elevating Ca2+ from 1.25 to 2.00 mM significantly narrowed perinexal width measured by transmission electron microscopy. Optically mapped, Langendorff-perfused guinea pig hearts perfused with increasing K+ revealed the expected biphasic CV-K+ relationship during perfusion with different Na+ and Ca2+ concentrations. Neither elevating Na+ nor Ca2+ alone consistently modulated the positive slope of CV-K+ or conduction slowing at 10-mM K+; however, combined Na+ and Ca2+ elevation significantly mitigated conduction slowing at 10-mM K+. Pharmacologic GJC inhibition with 30-μM carbenoxolone slowed CV without changing the shape of CV-K+ curves. A computational model of CV predicted that elevating Na+ and narrowing clefts between myocytes, as occur with perinexal narrowing, reduces the positive and negative slopes of the CV-K+ relationship but do not support a primary role of GJC or sodium channel conductance. These data demonstrate that combinatorial effects of Na+ and Ca2+ differentially modulate conduction during hyperkalemia, and enhancing determinants of ephaptic coupling may attenuate conduction changes in a variety of physiologic conditions.


Sign in / Sign up

Export Citation Format

Share Document