scholarly journals Nanonet Inter-Fiber Spacing Controls Plasticity in Cell Migration

2019 ◽  
Vol 116 (3) ◽  
pp. 416a
Author(s):  
Aniket Jana ◽  
Intawat Nookeah ◽  
Jugroop Singh ◽  
Bahareh Behkam Behkam ◽  
Aime T. Franco ◽  
...  
Keyword(s):  
Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


2019 ◽  
Vol 63 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Guillem Lambies ◽  
Antonio García de Herreros ◽  
Víctor M. Díaz

Abstract Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S692-S692
Author(s):  
Mathias Hoehn ◽  
Uwe Himmelreich ◽  
Ralph Weber ◽  
Pedro Ramos-Cabrer ◽  
Susanne Wegener ◽  
...  

1997 ◽  
Vol 78 (02) ◽  
pp. 880-886 ◽  
Author(s):  
Monique J Wijnberg ◽  
Paul H A Quax ◽  
Nancy M E Nieuwenbroek ◽  
Jan H Verheijen

SummaryThe plasminogen activation system is thought to be important in cell migration processes. A role for this system during smooth muscle cell migration after vascular injury has been suggested from several animal studies. However, not much is known about its involvement in human vascular remodelling. We studied the involvement of the plasminogen activation system in human smooth muscle cell migration in more detail using an in vitro wound assay and a matrix invasion assay. Inhibition of plasmin activity or inhibition of urokinase-type plasminogen activator (u-PA) activity resulted in approximately 40% reduction of migration after 24 h in the wound assay and an even stronger reduction (70-80%) in the matrix invasion assay. Migration of smooth muscle cells in the presence of inhibitory antibodies against tissue-type plasminogen activator (t-PA) was not significantly reduced after 24 h, but after 48 h a 30% reduction of migration was observed, whereas in the matrix invasion assay a 50% reduction in invasion was observed already after 24 h. Prevention of the interaction of u-PA with cell surface receptors by addition of soluble u-PA receptor or α2-macroglobulin receptor associated protein (RAP) to the culture medium, resulted in a similar inhibition of migration and invasion. From these results it can be concluded that both u-PA and t-PA mediated plasminogen activation can contribute to in vitro human smooth muscle cell migration and invasion. Furthermore, the interaction between u-PA and its cell surface receptor appears also to be involved in this migration and invasion process. The inhibitory effects on migration and invasion by the addition of RAP suggests an involvement of a RAP sensitive receptor of the LDL receptor family, possibly the LDL-receptor related protein (LRP) and/or the VLDL receptor.


2019 ◽  
Author(s):  
Elena Giardino ◽  
Rosa Catalano ◽  
Annamaria Barbieri ◽  
Donatella Treppiedi ◽  
Federica Mangili ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document