scholarly journals Spatially resolved free-energy contributions of native fold and molten-globule-like Crambin

Author(s):  
Leonard P. Heinz ◽  
Helmut Grubmüller
2018 ◽  
Author(s):  
Navjeet Ahalawat ◽  
Jagannath Mondal

Collective variables (CV), when chosen judiciously, can play an important role in recognizing rate-limiting processes and rare events in any biomolecular systems. However, high dimensionality and inherent complexities associated with such biochemical systems render the identification of an optimal CV a challenging task, which in turn precludes the elucidation of underlying conformational landscape in sufficient details. In this context, a relevant model system is presented by 16residue, β hairpin of GB1 protein. Despite being the target of numerous theoretical and computational studies for understanding the protein folding, the set of CVs optimally characterizing the conformational landscape of, β hairpin of GB1 protein has remained elusive, resulting in a lack of consensus on its folding mechanism. Here we address this by proposing a pair of optimal CVs which can resolve the underlying free energy landscape of GB1 hairpin quite efficiently. Expressed as a linear combination of a number of traditional CVs, the optimal CV for this system is derived by employing recently introduced Timestructured Independent Component Analysis (TICA) approach on a large number of independent unbiased simulations. By projecting the replica-exchange simulated trajectories along these pair of optimized CVs, the resulting free energy landscape of this system are able to resolve four distinct wellseparated metastable states encompassing the extensive ensembles of folded,unfolded and molten globule states. Importantly, the optimized CVs were found to be capable of automatically recovering a novel partial helical state of this protein, without needing to explicitly invoke helicity as a constituent CV. Furthermore, a quantitative sensitivity analysis of each constituent in the optimized CV provided key insights on the relative contributions of the constituent CVs in the overall free energy landscapes. Finally, the kinetic pathways con necting these metastable states, constructed using a Markov State Model, provide an optimum description of underlying folding mechanism of the peptide. Taken together, this work oers a quantitatively robust approach towards comprehensive mapping of the underlying folding landscape of a quintessential model system along its optimized collective variables.


Biochemistry ◽  
2006 ◽  
Vol 45 (51) ◽  
pp. 15468-15473 ◽  
Author(s):  
Kanako Nakagawa ◽  
Akihito Tokushima ◽  
Kazuo Fujiwara ◽  
Masamichi Ikeguchi

2011 ◽  
Vol 79 (7) ◽  
pp. 2161-2171 ◽  
Author(s):  
Satoshi Yasuda ◽  
Takashi Yoshidome ◽  
Yuichi Harano ◽  
Roland Roth ◽  
Hiraku Oshima ◽  
...  

2020 ◽  
Vol 43 ◽  
Author(s):  
Robert Mirski ◽  
Mark H. Bickhard ◽  
David Eck ◽  
Arkadiusz Gut

Abstract There are serious theoretical problems with the free-energy principle model, which are shown in the current article. We discuss the proposed model's inability to account for culturally emergent normativities, and point out the foundational issues that we claim this inability stems from.


Author(s):  
David C. Joy

Electron channeling patterns (ECP) were first found by Coates (1967) while observing a large bulk, single crystal of silicon in a scanning electron microscope. The geometric pattern visible was shown to be produced as a result of the changes in the angle of incidence, between the beam and the specimen surface normal, which occur when the sample is examined at low magnification (Booker, Shaw, Whelan and Hirsch 1967).A conventional electron diffraction pattern consists of an angularly resolved intensity distribution in space which may be directly viewed on a fluorescent screen or recorded on a photographic plate. An ECP, on the other hand, is produced as the result of changes in the signal collected by a suitable electron detector as the incidence angle is varied. If an integrating detector is used, or if the beam traverses the surface at a fixed angle, then no channeling contrast will be observed. The ECP is thus a time resolved electron diffraction effect. It can therefore be related to spatially resolved diffraction phenomena by an application of the concepts of reciprocity (Cowley 1969).


Author(s):  
Steven M. Le Vine ◽  
David L. Wetzel

In situ FT-IR microspectroscopy has allowed spatially resolved interrogation of different parts of brain tissue. In previous work the spectrrscopic features of normal barin tissue were characterized. The white matter, gray matter and basal ganglia were mapped from appropriate peak area measurements from spectra obtained in a grid pattern. Bands prevalent in white matter were mostly associated with the lipid. These included 2927 and 1469 cm-1 due to CH2 as well as carbonyl at 1740 cm-1. Also 1235 and 1085 cm-1 due to phospholipid and galactocerebroside, respectively (Figs 1and2). Localized chemical changes in the white matter as a result of white matter diseases have been studied. This involved the documentation of localized chemical evidence of demyelination in shiverer mice in which the spectra of white matter lacked the marked contrast between it and gray matter exhibited in the white matter of normal mice (Fig. 3).The twitcher mouse, a model of Krabbe’s desease, was also studied. The purpose in this case was to look for a localized build-up of psychosine in the white matter caused by deficiencies in the enzyme responsible for its breakdown under normal conditions.


Author(s):  
David L. Wetzel ◽  
John A. Reffner ◽  
Gwyn P. Williams

Synchrotron radiation is 100 to 1000 times brighter than a thermal source such as a globar. It is not accompanied with thermal noise and it is highly directional and nondivergent. For these reasons, it is well suited for ultra-spatially resolved FT-IR microspectroscopy. In efforts to attain good spatial resolution in FT-IR microspectroscopy with a thermal source, a considerable fraction of the infrared beam focused onto the specimen is lost when projected remote apertures are used to achieve a small spot size. This is the case because of divergence in the beam from that source. Also the brightness is limited and it is necessary to compromise on the signal-to-noise or to expect a long acquisition time from coadding many scans. A synchrotron powered FT-IR Microspectrometer does not suffer from this effect. Since most of the unaperatured beam’s energy makes it through even a 12 × 12 μm aperture, that is a starting place for aperture dimension reduction.


Author(s):  
A. M. Bradshaw

X-ray photoelectron spectroscopy (XPS or ESCA) was not developed by Siegbahn and co-workers as a surface analytical technique, but rather as a general probe of electronic structure and chemical reactivity. The method is based on the phenomenon of photoionisation: The absorption of monochromatic radiation in the target material (free atoms, molecules, solids or liquids) causes electrons to be injected into the vacuum continuum. Pseudo-monochromatic laboratory light sources (e.g. AlKα) have mostly been used hitherto for this excitation; in recent years synchrotron radiation has become increasingly important. A kinetic energy analysis of the so-called photoelectrons gives rise to a spectrum which consists of a series of lines corresponding to each discrete core and valence level of the system. The measured binding energy, EB, given by EB = hv−EK, where EK is the kineticenergy relative to the vacuum level, may be equated with the orbital energy derived from a Hartree-Fock SCF calculation of the system under consideration (Koopmans theorem).


Author(s):  
G. Remond ◽  
R.H. Packwood ◽  
C. Gilles ◽  
S. Chryssoulis

Merits and limitations of layered and ion implanted specimens as possible reference materials to calibrate spatially resolved analytical techniques are discussed and illustrated for the case of gold analysis in minerals by means of x-ray spectrometry with the EPMA. To overcome the random heterogeneities of minerals, thin film deposition and ion implantation may offer an original approach to the manufacture of controlled concentration/ distribution reference materials for quantification of trace elements with the same matrix as the unknown.In order to evaluate the accuracy of data obtained by EPMA we have compared measured and calculated x-ray intensities for homogeneous and heterogeneous specimens. Au Lα and Au Mα x-ray intensities were recorded at various electron beam energies, and hence at various sampling depths, for gold coated and gold implanted specimens. X-ray intensity calculations are based on the use of analytical expressions for both the depth ionization Φ (ρz) and the depth concentration C (ρz) distributions respectively.


Sign in / Sign up

Export Citation Format

Share Document