Administration of human platelet-rich plasma reduces infarction volume and improves motor function in adult rats with focal ischemic stroke

2015 ◽  
Vol 1594 ◽  
pp. 267-273 ◽  
Author(s):  
Ying Zhang ◽  
Guomin Ying ◽  
Changhong Ren ◽  
Yunneng Jizhang ◽  
David Brogan ◽  
...  
2013 ◽  
pp. 85-94 ◽  
Author(s):  
T. BRIMA ◽  
A. MIKULECKÁ ◽  
J. OTÁHAL

Perinatal ischemic stroke is a leading cerebrovascular disorder occurring in infants around the time of birth associated with long term comorbidities including motor, cognitive and behavioral deficits. We sought to determine the impact of perinatal induced stroke on locomotion, behavior and motor function in rats. A photothrombotic model of ischemic stroke was used in rat at postnatal day 7. Presently, we induced two lesions of different extents, to assess the consequences of stroke on motor function, locomotion and possible correlations to morphological changes. Behavioral tests sensitive to sensorimotor changes were used; locomotion expressed as distance moved in the open field was monitored and histological changes were also assessed. Outcomes depicted two kinds of lesions of different shapes and sizes, relative to laser illumination. Motor performance of rats submitted to stroke was poor when compared to controls; a difference in motor performance was also noted between rats with small and large lesions. Correlations were observed between: motor performance and exposition time; volume ratio and exposition time; and in the rotarod between motor performance and volume ratio. Outcomes demonstrate that photothrombotic cerebral ischemic stroke induced in early postnatal period and tested in adulthood, indeed influenced functional performance governed by the affected brain regions.


1988 ◽  
Vol 59 (02) ◽  
pp. 236-239 ◽  
Author(s):  
Giovanna Barzaghi ◽  
Chiara Cerletti ◽  
Giovanni de Gaetano

SummaryWe studied the aggregating effect of different concentrations of phospholipase C (PLC) (extracted from Clostridium perfringens) on human platelet-rich plasma (PRP). PRP was preincubated with PLC for 3 min at 37° C and the platelet aggregation was followed for 10 min. The threshold aggregating concentration (TAG) of PLC was 3-4 U/ml.We also studied the potentiation of PLC with other stimuli on platelet aggregation. Potentiating stimuli, such as arachidonic acid (AA), ADP. Platelet Activating Factor (PAF) and U-46619 (a stable analogue of cyclic endoperoxides) were all used at subthreshold concentrations. We also studied the possible inhibitory effect of aspirin, apyrase, TMQ, a prostaglandin endoper- oxide/thromboxane receptor antagonist and BN-52021, a PAF receptor antagonist. Only aspirin and apyrase were able to reduce aggregation induced by PLC alone and PLC + AA and PLC + ADP respectively. TMQ and BN-52021 were inactive. In ex vivo experiments oral aspirin (500 mg) partially inhibited platelet aggregation induced by PLC alone, PLC + AA and PLC + ADP 2 and 24 h after administration. Aspirin 20 mg for 7 days also reduced aggregation induced by PLC + AA.


1993 ◽  
Vol 70 (05) ◽  
pp. 834-837 ◽  
Author(s):  
Akira Suehiro ◽  
Yoshio Oura ◽  
Motoo Ueda ◽  
Eizo Kakishita

SummaryWe investigated the effect of staphylokinase (SAK), which has specific thrombolytic properties, on human platelet aggregation. Platelet aggregation induced with collagen was observed following preincubation of platelets in platelet-rich plasma (PRP) or washed platelet suspension (WP) with SAK at 37° C for 30 min. SAK inhibited platelet aggregation in PRP only at the highest examined concentration (1 x 10-4 g/ml). Although SAK did not inhibit platelet aggregation in WP which contained fibrinogen, it did when the platelets had been preincubated with SAK and plasminogen. The most effective concentration in WP was 1 x 10-6 g/ml. The effect could be inhibited by adding aprotinin or α2-antiplasmin. The highest generation of plasmin in the same preincubation fluid was detected at 1 x 10-6 g/ml SAK. We concluded that SAK can inhibit platelet aggregation in WP by generating plasmin and/or fibrinogen degradation products, but is only partially effective in PRP because of the existence of α2-antiplasmin.


1981 ◽  
Vol 46 (02) ◽  
pp. 547-549 ◽  
Author(s):  
E M Essien ◽  
M I Ebhota

SummaryDuring acute malaria infection, platelets in human platelet-rich plasma are hypersensitive to the addition of ADP between 1.0 uM and 5.0 uM, or adrenaline 0.11 uM as aggregating agents. The mean maximum aggregation amplitude (as % of light transmission) obtained from 8 subjects in response to added ADP (1.0 uM), 39.8 ± 27 (1SD), was significantly greater than the value in 6 controls (5.2±6.7 (1SD); t = 3, 51 P <0.005). A similar pattern of response was obtained with higher ADP concentrations (2.4,4.5 or 5.0 uM) in 22 patients and 20 control subjects (89.9±14.9% vs 77.8±16.5% (1SD) t = 2.45, P <0.02). Addition of 4.5 uM ADP to patient PRP usually evoked only a single aggregation wave (fused primary and secondary waves) while the typical primary and secondary wave pattern was usually obtained from controls.Mean plasma B-thromboglobulin (BTG) concentration in 7 patients (208.3 ± 15.6 ng/ml) was significantly higher than the value in 6 control subjects (59.2±15.7 ng/ml; t = 13.44, P <0.002).


1981 ◽  
Vol 46 (02) ◽  
pp. 538-542 ◽  
Author(s):  
R Pilo ◽  
D Aharony ◽  
A Raz

SummaryThe role of arachidonic acid oxygenated products in human platelet aggregation induced by the ionophore A23187 was investigated. The ionophore produced an increased release of both saturated and unsaturated fatty acids and a concomitant increased formation of TxA2 and other arachidonate products. TxA2 (and possibly other cyclo oxygenase products) appears to have a significant role in ionophore-induced aggregation only when low concentrations (<1 μM) of the ionophore are employed.Testosterone added to rat or human platelet-rich plasma (PRP) was shown previously to potentiate platelet aggregation induced by ADP, adrenaline, collagen and arachidonic acid (1, 2). We show that testosterone also potentiates ionophore induced aggregation in washed platelets and in PRP. This potentiation was dose and time dependent and resulted from increased lipolysis and concomitant generation of TxA2 and other prostaglandin products. The testosterone potentiating effect was abolished by preincubation of the platelets with indomethacin.


1958 ◽  
Vol 02 (01/02) ◽  
pp. 111-124 ◽  
Author(s):  
E Deutsch ◽  
K Martiny

Summary1. Normal platelets are necessary for induction of normal clot retraction.2. Serotonin does not induce retraction in human platelet-free plasma-clots or enhance clot firmness as measured in the coagulogram.3. Serotonin does not improve clot retraction or firmness in plasma clots with sub-optimal platelet counts.4. Methylserotonin inhibits clot retraction of platelet-rich plasma to a certain extent in moderate doses, whereas, high doses are ineffective. BOL 148 has a similar, but less significant action. There is a possibility that these effects are specific antiserotonin-effects.5. LSD 25 was ineffective in all concentrations used.6. Largactil and reserpin inhibit retraction in high doses. There seems to be a non specific effect caused by the high dose.7. Reserpine does not release a retraction-inducing agent from the platelets, which could be detected in the centrifuged platelet-free plasma used for the incubation.8. Serotonin does not replace the retraction-cofactor of Hartert, or the dialyzable factor of Lüscher in synthetic clotting substrates.9. Serotonin is of no essential value in inducing normal retraction of human plasma clots.


1984 ◽  
Vol 52 (03) ◽  
pp. 333-335 ◽  
Author(s):  
Vider M Steen ◽  
Holm Holmsen

SummaryThe inhibitory effect of cAMP-elevating agents on shape change and aggregation in human platelets was studied to improve the understanding of the sequential relationship between these two responses.Human platelet-rich plasma was preincubated for 2 min at 37° C with prostaglandin E1 or adenosine, agents known to elevate the intracellular level of cAMP. Their inhibitory effects on ADP-induced shape change and aggregation were determined both separately and simultaneously. The dose-inhibition patterns for shape change and aggregation were similar for both PGE1 and adenosine. There was no distinct difference between the inhibitory action of these two inhibitors.These observations suggest that elevation of the intracellular concentration of cAMP interferes with an early step in the stimulus-response coupling that is common for aggregation and shape change.


2009 ◽  
Vol 109 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Takayoshi Hosono ◽  
Ayumi Kamo ◽  
Satoshi Hakotani ◽  
Kenji Minato ◽  
Haruka Akeno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document