Reconstructed phase space portraits for detecting brain diseases using deep learning

2022 ◽  
Vol 71 ◽  
pp. 103278
Author(s):  
N. Ilakiyaselvan ◽  
A. Nayeemulla Khan ◽  
A. Shahina
2020 ◽  
Vol 34 (3) ◽  
pp. 240
Author(s):  
N. Ilakiyaselvan ◽  
◽  
◽  
A. Nayeemulla Khan ◽  
A. Shahina ◽  
...  

2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


2012 ◽  
Vol 562-564 ◽  
pp. 1394-1397
Author(s):  
Yu Hua Dong ◽  
Hai Chun Ning

This paper proposes a method of wavelet transform combined with SVD (Singular Value Extracting), and the abnormal data elimination in its trajectory measurement is studied. After the wavelet decomposition of the observed data, combining the approximate component and the detail component, the phase space is reconstructed. The increment criterion of singular entropy is used for the input observed matrix of SVD, and the singular value is selected. Then the original signal is reconstructed by SVD inverse transform. This method overcomes the distortion problem of data end in phase space reconstruction by Hankel matrix. The reconstructed phase space by components of wavelet decomposition is orthogonal. So it further improves the accuracy of noise reduction and abnormal detection by SVD. The results of experimental data processing show the effectiveness of this method proposed in the paper.


2018 ◽  
Vol 51 (3) ◽  
pp. 443-449 ◽  
Author(s):  
Cecília M. Costa ◽  
Ittalo S. Silva ◽  
Rafael D. de Sousa ◽  
Renato A. Hortegal ◽  
Carlos Danilo M. Regis

2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Jianqiang Li ◽  
Guanghui Fu ◽  
Yueda Chen ◽  
Pengzhi Li ◽  
Bo Liu ◽  
...  

Abstract Background Screening of the brain computerised tomography (CT) images is a primary method currently used for initial detection of patients with brain trauma or other conditions. In recent years, deep learning technique has shown remarkable advantages in the clinical practice. Researchers have attempted to use deep learning methods to detect brain diseases from CT images. Methods often used to detect diseases choose images with visible lesions from full-slice brain CT scans, which need to be labelled by doctors. This is an inaccurate method because doctors detect brain disease from a full sequence scan of CT images and one patient may have multiple concurrent conditions in practice. The method cannot take into account the dependencies between the slices and the causal relationships among various brain diseases. Moreover, labelling images slice by slice spends much time and expense. Detecting multiple diseases from full slice brain CT images is, therefore, an important research subject with practical implications. Results In this paper, we propose a model called the slice dependencies learning model (SDLM). It learns image features from a series of variable length brain CT images and slice dependencies between different slices in a set of images to predict abnormalities. The model is necessary to only label the disease reflected in the full-slice brain scan. We use the CQ500 dataset to evaluate our proposed model, which contains 1194 full sets of CT scans from a total of 491 subjects. Each set of data from one subject contains scans with one to eight different slice thicknesses and various diseases that are captured in a range of 30 to 396 slices in a set. The evaluation results present that the precision is 67.57%, the recall is 61.04%, the F1 score is 0.6412, and the areas under the receiver operating characteristic curves (AUCs) is 0.8934. Conclusion The proposed model is a new architecture that uses a full-slice brain CT scan for multi-label classification, unlike the traditional methods which only classify the brain images at the slice level. It has great potential for application to multi-label detection problems, especially with regard to the brain CT images.


Author(s):  
Piyush Saxena ◽  
Devansh Saxena ◽  
Xiao Nie ◽  
Aaron Helmers ◽  
Nithin Ramachandran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document