A new method to predict anomaly in brain network based on graph deep learning

2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.

2018 ◽  
Author(s):  
RL van den Brink ◽  
S Nieuwenhuis ◽  
TH Donner

ABSTRACTThe widely projecting catecholaminergic (norepinephrine and dopamine) neurotransmitter systems profoundly shape the state of neuronal networks in the forebrain. Current models posit that the effects of catecholaminergic modulation on network dynamics are homogenous across the brain. However, the brain is equipped with a variety of catecholamine receptors with distinct functional effects and heterogeneous density across brain regions. Consequently, catecholaminergic effects on brain-wide network dynamics might be more spatially specific than assumed. We tested this idea through the analysis of functional magnetic resonance imaging (fMRI) measurements performed in humans (19 females, 5 males) at ‘rest’ under pharmacological (atomoxetine-induced) elevation of catecholamine levels. We used a linear decomposition technique to identify spatial patterns of correlated fMRI signal fluctuations that were either increased or decreased by atomoxetine. This yielded two distinct spatial patterns, each expressing reliable and specific drug effects. The spatial structure of both fluctuation patterns resembled the spatial distribution of the expression of catecholamine receptor genes: α1 norepinephrine receptors (for the fluctuation pattern: placebo > atomoxetine), ‘D2-like’ dopamine receptors (pattern: atomoxetine > placebo), and β norepinephrine receptors (for both patterns, with correlations of opposite sign). We conclude that catecholaminergic effects on the forebrain are spatially more structured than traditionally assumed and at least in part explained by the heterogeneous distribution of various catecholamine receptors. Our findings link catecholaminergic effects on large-scale brain networks to low-level characteristics of the underlying neurotransmitter systems. They also provide key constraints for the development of realistic models of neuromodulatory effects on large-scale brain network dynamics.SIGNIFICANCE STATEMENTThe catecholamines norepinephrine and dopamine are an important class of modulatory neurotransmitters. Because of the widespread and diffuse release of these neuromodulators, it has commonly been assumed that their effects on neural interactions are homogenous across the brain. Here, we present results from the human brain that challenge this view. We pharmacologically increased catecholamine levels and imaged the effects on the spontaneous covariations between brain-wide fMRI signals at ‘rest’. We identified two distinct spatial patterns of covariations: one that was amplified and another that was suppressed by catecholamines. Each pattern was associated with the heterogeneous spatial distribution of the expression of distinct catecholamine receptor genes. Our results provide novel insights into the catecholaminergic modulation of large-scale human brain dynamics.


Author(s):  
Jingyan Qiu ◽  
Linjian Li ◽  
Yida Liu ◽  
Yingjun Ou ◽  
Yubei Lin

Alzheimer’s disease (AD) is one of the most common forms of dementia. The early stage of the disease is defined as Mild Cognitive Impairment (MCI). Recent research results have shown the prospect of combining Magnetic Resonance Imaging (MRI) scanning of the brain and deep learning to diagnose AD. However, the CNN deep learning model requires a large scale of samples for training. Transfer learning is the key to enable a model with high accuracy by using limited data for training. In this paper, DenseNet and Inception V4, which were pre-trained on the ImageNet dataset to obtain initialization values of weights, are, respectively, used for the graphic classification task. The ensemble method is employed to enhance the effectiveness and efficiency of the classification models and the result of different models are eventually processed through probability-based fusion. Our experiments were completely conducted on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) public dataset. Only the ternary classification is made due to a higher demand for medical detection and diagnosis. The accuracies of AD/MCI/Normal Control (NC) of different models are estimated in this paper. The results of the experiments showed that the accuracies of the method achieved a maximum of 92.65%, which is a remarkable outcome compared with the accuracies of the state-of-the-art methods.


NeuroImage ◽  
2014 ◽  
Vol 98 ◽  
pp. 203-215 ◽  
Author(s):  
Chang-Eop Kim ◽  
Yu Kyeong Kim ◽  
Geehoon Chung ◽  
Jae Min Jeong ◽  
Dong Soo Lee ◽  
...  

2020 ◽  
Vol 21 (S6) ◽  
Author(s):  
Jianqiang Li ◽  
Guanghui Fu ◽  
Yueda Chen ◽  
Pengzhi Li ◽  
Bo Liu ◽  
...  

Abstract Background Screening of the brain computerised tomography (CT) images is a primary method currently used for initial detection of patients with brain trauma or other conditions. In recent years, deep learning technique has shown remarkable advantages in the clinical practice. Researchers have attempted to use deep learning methods to detect brain diseases from CT images. Methods often used to detect diseases choose images with visible lesions from full-slice brain CT scans, which need to be labelled by doctors. This is an inaccurate method because doctors detect brain disease from a full sequence scan of CT images and one patient may have multiple concurrent conditions in practice. The method cannot take into account the dependencies between the slices and the causal relationships among various brain diseases. Moreover, labelling images slice by slice spends much time and expense. Detecting multiple diseases from full slice brain CT images is, therefore, an important research subject with practical implications. Results In this paper, we propose a model called the slice dependencies learning model (SDLM). It learns image features from a series of variable length brain CT images and slice dependencies between different slices in a set of images to predict abnormalities. The model is necessary to only label the disease reflected in the full-slice brain scan. We use the CQ500 dataset to evaluate our proposed model, which contains 1194 full sets of CT scans from a total of 491 subjects. Each set of data from one subject contains scans with one to eight different slice thicknesses and various diseases that are captured in a range of 30 to 396 slices in a set. The evaluation results present that the precision is 67.57%, the recall is 61.04%, the F1 score is 0.6412, and the areas under the receiver operating characteristic curves (AUCs) is 0.8934. Conclusion The proposed model is a new architecture that uses a full-slice brain CT scan for multi-label classification, unlike the traditional methods which only classify the brain images at the slice level. It has great potential for application to multi-label detection problems, especially with regard to the brain CT images.


2017 ◽  
Vol 114 (48) ◽  
pp. 12827-12832 ◽  
Author(s):  
Diego Vidaurre ◽  
Stephen M. Smith ◽  
Mark W. Woolrich

The brain recruits neuronal populations in a temporally coordinated manner in task and at rest. However, the extent to which large-scale networks exhibit their own organized temporal dynamics is unclear. We use an approach designed to find repeating network patterns in whole-brain resting fMRI data, where networks are defined as graphs of interacting brain areas. We find that the transitions between networks are nonrandom, with certain networks more likely to occur after others. Further, this nonrandom sequencing is itself hierarchically organized, revealing two distinct sets of networks, or metastates, that the brain has a tendency to cycle within. One metastate is associated with sensory and motor regions, and the other involves areas related to higher order cognition. Moreover, we find that the proportion of time that a subject spends in each brain network and metastate is a consistent subject-specific measure, is heritable, and shows a significant relationship with cognitive traits.


2020 ◽  
Author(s):  
Pesoli Matteo ◽  
Rucco Rosaria ◽  
Liparoti Marianna ◽  
Lardone Anna ◽  
D’Aurizio Giula ◽  
...  

AbstractThe topology of brain networks changes according to environmental demands and can be described within the framework of graph theory. We hypothesized that 24-hours long sleep deprivation (SD) causes functional rearrangements of the brain topology so as to impair optimal communication, and that such rearrangements relate to the performance in specific cognitive tasks, namely the ones specifically requiring attention. Thirty-two young men underwent resting-state MEG recording and assessments of attention and switching abilities before and after SD. We found loss of integration of brain network and a worsening of attention but not of switching abilities. These results show that brain network changes due to SD affect switching abilities, worsened attention and induce large-scale rearrangements in the functional networks.


2019 ◽  
Author(s):  
Jalal Mirakhorli ◽  
Mojgan Mirakhorli

AbstractFunctional neuroimaging techniques using resting-state functional MRI (rs-fMRI) have accelerated progress in brain disorders and dysfunction studies. Since, there are the slight differences between healthy and disorder brains, investigation in the complex topology of human brain functional networks is difficult and complicated task with the growth of evaluation criteria. Recently, graph theory and deep learning applications have spread widely to understanding human cognitive functions that are linked to gene expression and related distributed spatial patterns. Irregular graph analysis has been widely applied in many brain recognition domains, these applications might involve both node-centric and graph-centric tasks. In this paper, we discuss about individual Variational Autoencoder and Graph Convolutional Network (GCN) for the region of interest identification areas of brain which do not have normal connection when apply certain tasks. Here, we identified a framework of Graph Auto-Encoder (GAE) with hyper sphere distributer for functional data analysis in brain imaging studies that is underlying non-Euclidean structure, in learning of strong rigid graphs among large scale data. In addition, we distinguish the possible mode correlations in abnormal brain connections.


2017 ◽  
Author(s):  
Douglas H. Schultz ◽  
Takuya Ito ◽  
Levi I. Solomyak ◽  
Richard H. Chen ◽  
Ravi D. Mill ◽  
...  

ABSTRACTWe all vary in our mental health, even among people not meeting diagnostic criteria for mental illness. Understanding this individual variability may reveal factors driving the risk for mental illness, as well as factors driving sub-clinical problems that still adversely affect quality of life. To better understand the large-scale brain network mechanisms underlying this variability we examined the relationship between mental health symptoms and resting-state functional connectivity patterns in cognitive control systems. One such system is the frontoparietal cognitive control network (FPN). Changes in FPN connectivity may impact mental health by disrupting the ability to regulate symptoms in a goal-directed manner. Here we test the hypothesis that FPN dysconnectivity relates to mental health symptoms even among individuals who do not meet formal diagnostic criteria but may exhibit meaningful symptom variation. We found that depression symptoms severity negatively correlated with between-network global connectivity (BGC) of the FPN. This suggests that decreased connectivity between the FPN and the rest of the brain is related to increased depression symptoms in the general population. These findings complement previous clinical studies to support the hypothesis that global FPN connectivity contributes to the regulation of mental health symptoms across both health and disease.AUTHOR SUMMARYUnderstanding how large-scale network interactions in the brain contribute to (or serve a protective role against) mental health symptoms is an important step toward developing more effective mental health treatments. Here we test the hypothesis that cognitive control networks play an important role in mental health by being highly connected to other brain networks and able to serve as a feedback mechanism capable of regulating symptoms in a goal-directed manner. We found that the more well-connected the frontoparietal cognitive control network was to other networks in the brain the less depression symptoms were reported by participants. These results contribute to our understanding of how brain network interactions are related to mental health symptoms, even in individuals who have not been diagnosed with a disorder.


2022 ◽  
Vol 27 (1) ◽  
pp. 1-30
Author(s):  
Mengke Ge ◽  
Xiaobing Ni ◽  
Xu Qi ◽  
Song Chen ◽  
Jinglei Huang ◽  
...  

Brain network is a large-scale complex network with scale-free, small-world, and modularity properties, which largely supports this high-efficiency massive system. In this article, we propose to synthesize brain-network-inspired interconnections for large-scale network-on-chips. First, we propose a method to generate brain-network-inspired topologies with limited scale-free and power-law small-world properties, which have a low total link length and extremely low average hop count approximately proportional to the logarithm of the network size. In addition, given the large-scale applications, considering the modularity of the brain-network-inspired topologies, we present an application mapping method, including task mapping and deterministic deadlock-free routing, to minimize the power consumption and hop count. Finally, a cycle-accurate simulator BookSim2 is used to validate the architecture performance with different synthetic traffic patterns and large-scale test cases, including real-world communication networks for the graph processing application. Experiments show that, compared with other topologies and methods, the brain-network-inspired network-on-chips (NoCs) generated by the proposed method present significantly lower average hop count and lower average latency. Especially in graph processing applications with a power-law and tightly coupled inter-core communication, the brain-network-inspired NoC has up to 70% lower average hop count and 75% lower average latency than mesh-based NoCs.


Intensification in the occurrence of brain diseases and the need for the initial diagnosis for ailments like Tumor, Alzheimer’s, Epilepsy and Parkinson’s has riveted the attention of researchers. Machine learning practices, specifically deep learning, is considered as a beneficial diagnostic tool. Deep learning approaches to neuroimaging will assist computer-aided analysis of neurological diseases. Feature extraction of neuroimages carried out using Artificial Neural Networks leads to better diagnoses. In this study, all the brain diseases are revisited to consolidate the methodologies carried out by various authors in the literature.


Sign in / Sign up

Export Citation Format

Share Document