scholarly journals Potential for native hydrocarbon-degrading bacteria to remediate highly weathered oil-polluted soils in Qatar through self-purification and bioaugmentation in biopiles

2020 ◽  
Vol 28 ◽  
pp. e00543
Author(s):  
Nasser AlKaabi ◽  
Mohammad A. Al-Ghouti ◽  
Samir Jaoua ◽  
Nabil Zouari
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Zulfa Al Disi ◽  
Samir Jaoua ◽  
Dhabia Al-Thani ◽  
Saeed Al-Meer ◽  
Nabil Zouari

Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. N. Melekhina ◽  
E. S. Belykh ◽  
M. Yu. Markarova ◽  
A. A. Taskaeva ◽  
E. E. Rasova ◽  
...  

AbstractThe present comprehensive study aimed to estimate the aftermath of oil contamination and the efficacy of removing the upper level of polluted soil under the conditions of the extreme northern taiga of northeastern European Russia. Soil samples from three sites were studied. Two sites were contaminated with the contents of a nearby sludge collector five years prior to sampling. The highly contaminated upper soil level was removed from one of them. The other was left for self-restoration. A chemical analysis of the soils was conducted, and changes in the composition of the soil zoocoenosis and bacterial and fungal microbiota were investigated. At both contaminated sites, a decrease in the abundance and taxonomic diversity of indicator groups of soil fauna, oribatid mites and collembolans compared to the background site were found. The pioneer eurytopic species Oppiella nova, Proisotoma minima and Xenyllodes armatus formed the basis of the microarthropod populations in the contaminated soil. A complete change in the composition of dominant taxonomic units was observed in the microbiota, both the bacterial and fungal communities. There was an increase in the proportion of representatives of Proteobacteria and Actinobacteria in polluted soils compared to the background community. Hydrocarbon-degrading bacteria—Alcanivorax, Rhodanobacter ginsengisoli, Acidobacterium capsulatum, and Acidocella—and fungi—Amorphotheca resinae abundances greatly increased in oil-contaminated soil. Moreover, among both bacteria and fungi, a sharp increase in the abundance of uncultivated organisms that deserve additional attention as potential oil degraders or organisms with a high resistance to oil contamination were observed. The removal of the upper soil level was partly effective in terms of decreasing the oil product concentration (from approximately 21 to 2.6 g/kg of soil) and preventing a decrease in taxonomic richness but did not prevent alterations in the composition of the microbiota or zoocoenosis.


Author(s):  
Mariana MARINESCU ◽  
Anca LACATUSU ◽  
Eugenia GAMENT ◽  
Georgiana PLOPEANU ◽  
Vera CARABULEA

Bioremediation of crude oil contaminated soil is an effective process to clean petroleum pollutants from the environment. Crude oil bioremediation of soils is limited by the bacteria activity in degrading the spills hydrocarbons. Native crude oil degrading bacteria were isolated from different crude oil polluted soils. The isolated bacteria belong to the genera Pseudomonas, Mycobacterium, Arthrobacter and Bacillus. A natural biodegradable product and bacterial inoculum were used for total petroleum hydrocarbon (TPH) removal from an artificial polluted soil. For soil polluted with 5% crude oil, the bacterial top, including those placed in the soil by inoculation was 30 days after impact, respectively 7 days after inoculum application, while in soil polluted with 10% crude oil,  multiplication top of bacteria was observed in the determination made at 45 days after impact and 21 days after inoculum application, showing once again how necessary is for microorganisms habituation and adaptation to environment being a function of pollutant concentration. The microorganisms inoculated showed a slight adaptability in soil polluted with 5% crude oil, but complete inhibition in the first 30 days of experiment at 10% crude oil.


2008 ◽  
Vol 29 (2) ◽  
pp. 171-182 ◽  
Author(s):  
E. Cervantes‐González ◽  
N. G. Rojas‐Avelizapa ◽  
R. Cruz‐Camarillo ◽  
J. García‐Mena ◽  
L. I. Rojas‐Avelizapa

Author(s):  
Olukunle, Oluwatoyin Folake

Aims: To identify crude oil-degrading bacteria isolated from polluted soils and waters and screen the presence of catechol 2, 3 dioxygenase (C23O) gene encoding oil-degradation in the strains with the highest degradative activity. Study Design: Laboratory-experimental design was used in this study. Place and Duration of Study: Crude oil polluted soils and waters were collected from Awoye, Mese and Oluwa villages in Ondo State, Nigeria and three different flow stations (Agbada-Aluu shell, Obite, and Bonny) in Rivers State, Nigeria. Methodology: The identities of the isolates were confirmed by extracting their total genomic DNA using standard DNA protocols while a portion of 16S bacterial gene of their DNA was amplified by polymerase chain reaction (PCR) using the primers E9F and U1510R and sequenced using Sanger method. Degenerate primers were used to isolate and identify the gene encoding C23O, responsible for the degradation of oil. Molecular cloning of the gene was done by transforming into Escherichia coli DHα. The correct inserts from the selected clones were performed by colony PCR. The isolated gene was sequenced with a Dye terminator sequencing kit and the product was analyzed with Prism DNA sequencer. Results: The results obtained from the conserved sequence of the 16S rRNA coupled with the nucleotide sequence revealed ten (10) crude oil-degrading bacteria, with CFfab 14 and CFfab 12 having the highest and lowest degrading activity of  78.92 ± 0.9 Unit/mL/h and 43.89 ± 1.3 Unit/mL/h on day 3 respectively. Conclusion: The gene C23O responsible for the production of catechol 2, 3 dioxygenase was isolated from strains CFfab 5, CFfab 14 and CFfab 15. The nucleotide base sequence of the gene was determined to be 238 bp. It is expected that in bioremediation, indigenous microorganisms from polluted environments should be screened for the possible existence of this unique gene sequence for effectiveness. Further studies could be conducted on the possibility of cloning this C23O gene into other bacteria for more efficiency and effectiveness in the bioremediation process.


2020 ◽  
Author(s):  
CC Kim ◽  
GR Healey ◽  
WJ Kelly ◽  
ML Patchett ◽  
Z Jordens ◽  
...  

© 2019, International Society for Microbial Ecology. Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.


Sign in / Sign up

Export Citation Format

Share Document