petroleum pollutants
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 1)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 400
Author(s):  
Katarzyna Wojtowicz ◽  
Teresa Steliga ◽  
Piotr Kapusta ◽  
Joanna Brzeszcz ◽  
Tomasz Skalski

Biodegradation is a method of effectively removing petroleum hydrocarbons from the natural environment. This research focuses on the biodegradation of aliphatic hydrocarbons, monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) and polycyclic aromatic hydrocarbons (PAHs) as a result of soil inoculation with a biopreparation A1 based on autochthonous microorganisms and a biopreparation A1 with the addition of γ-PGA. The research used biopreparation A1 made of the following strains: Dietzia sp. IN133, Gordonia sp. IN138 Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus sp. IN136 and Pseudomonas sp. IN132. The experiments were carried out in laboratory conditions (microbiological tests, respirometric tests, and in semi-technical conditions (ex-situ prism method). The biodegradation efficiency was assessed on the basis of respirometric tests, chromatographic analyses and toxicological tests. As a result of inoculation of AB soil with the biopreparation A1 within 6 months, a reduction of total petroleum hydrocarbons (TPH) (66.03%), BTEX (80.08%) and PAHs (38.86%) was achieved and its toxicity was reduced. Inoculation of AB soil with the biopreparation A1 with the addition of γ-PGA reduced the concentration of TPH, BTEX and PAHs by 79.21%, 90.19%, and 51.18%, respectively, and reduced its toxicity. The conducted research has shown that the addition of γ-PGA affects the efficiency of the biodegradation process of petroleum pollutants, increasing the degree of TPH biodegradation by 13.18%, BTEX by 10.11% and PAHs by 12.32% compared to pure biopreparation A1.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alexis Nzila ◽  
Musa M. Musa

Petroleum products consist mainly of aliphatics, aromatics, asphaltenes and resins. After oil exploitation, the concentrations of asphaltenes and resins are high in oil reservoirs; however, they are also the petroleum pollutants most recalcitrant to degradation, leading to high oil viscosity. A sizable amount of work has been dedicated to understand the degradation mechanisms of aliphatics and aromatics; however, in comparison, little work has been carried out on asphaltene and resin degradation. This review discusses our current knowledge on the understanding of asphaltene and resin degradation. More specifically, it sheds light on work carried out to date on the degradation of these pollutants, and highlights the major gaps that limit our understanding of their degradation pathways. It also presents new potential research areas that can be explored to fill in these gaps.


2021 ◽  
Vol 13 (16) ◽  
pp. 9267
Author(s):  
Xin Sui ◽  
Xuemei Wang ◽  
Yuhuan Li ◽  
Hongbing Ji

The petroleum industry’s development has been supported by the demand for petroleum and its by-products. During extraction and transportation, however, oil will leak into the soil, destroying the structure and quality of the soil and even harming the health of plants and humans. Scientists are researching and developing remediation techniques to repair and re-control the afflicted environment due to the health risks and social implications of petroleum hydrocarbon contamination. Remediation of soil contamination produced by petroleum hydrocarbons, on the other hand, is a difficult and time-consuming job. Microbial remediation is a focus for soil remediation because of its convenience of use, lack of secondary contamination, and low cost. This review lists the types and capacities of microorganisms that have been investigated to degrade petroleum hydrocarbons. However, investigations have revealed that a single microbial remediation faces difficulties, such as inconsistent remediation effects and substantial environmental consequences. It is necessary to understand the composition and source of pollutants, the metabolic genes and pathways of microbial degradation of petroleum pollutants, and the internal and external aspects that influence remediation in order to select the optimal remediation treatment strategy. This review compares the degradation abilities of microbial–physical, chemical, and other combination remediation methods, and highlights the degradation capabilities and processes of the greatest microbe-biochar, microbe–nutrition, and microbe–plant technologies. This helps in evaluating and forecasting the chemical behavior of contaminants with both short- and long-term consequences. Although there are integrated remediation strategies for the removal of petroleum hydrocarbons, practical remediation remains difficult. The sources and quantities of petroleum pollutants, as well as their impacts on soil, plants, and humans, are discussed in this article. Following that, the focus shifted to the microbiological technique of degrading petroleum pollutants and the mechanism of the combined microbial method. Finally, the limitations of existing integrated microbiological techniques are highlighted.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Lei Shi ◽  
Zhongzheng Liu

Abstract Purpose The present study envisaged the stoichiometry of microbial biomass in petroleum-contaminated soil, in order to study the influence of the petroleum-contaminated soil on the ecosystem stability. Methods A typical oil well area in the Northern Shaanxi was considered the research object and the oil pollution status was assessed by studying the physical, chemical, and microbiological characteristics of the soil in the area. Results From the measurement and analysis of the petroleum pollutants in the soil samples, it was observed that the concentration of the petroleum pollutants around all the oil well areas was higher than the critical value of 500 mg/kg. Furthermore, the C to N ratio of 8 soil samples around the oil wells (0.8:1~13.3:1) was lower than that of the control soil samples in most cases and could not reach the nutrient proportion level required by soil microorganisms. It was observed that the oil organic carbon content at 0~10 m from the wellhead was obviously higher than that in other areas, and decreased with an increase in the distance from the well. Based on the determination of soil organic carbon, total nitrogen, total phosphorus, and the soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and phosphorus content analysis, it was observed that only the soil organic carbon was significantly positively correlated to the oil pollutants in soil. Conclusions Imbalance in the C to N, SMBC, and SMBN ratio can lead to an acute shortage of the required nutrients than microorganisms, limit the soil microbial reproduction and growth, and thereby slow down the rate of indigenous microbial degradation of petroleum hydrocarbons, so as to reduce the impact of oil pollution on the stability of the entire ecosystem. Therefore, during the remediation of petroleum-contaminated soil in this study area, adequate nutrients need to be reasonably added to the soil.


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 148
Author(s):  
Teresa Steliga ◽  
Dorota Kluk

The article presents issues related to the possibility of using toxicological tests as a tool to monitor the progress of soil treatment contaminated with petroleum substances (TPH, PAH), Zn, Pb and Cd in bio-phytoremediation processes. In order to reduce the high content of petroleum pollutants (TPH = 56,371 mg kg−1 dry mass, PAH = 139.3 mg kg−1 dry mass), the technology of stepwise soil treatment was applied, including basic bioremediation and inoculation with biopreparations based of indigenous non-pathogenic species of bacteria, fungi and yeasts. As a result of basic bioremediation in laboratory conditions (ex-situ method), the reduction of petroleum pollutants TPH by 33.9% and PAH by 9.5% was achieved. The introduction of inoculation with biopraparation-1 prepared on the basis of non-pathogenic species of indigenous bacteria made it possible to reduce the TPH content by 86.3%, PAH by 40.3%. The use of a biopreparation-1 enriched with indigenous non-pathogenic species of fungi and yeasts in the third series of inoculation increased to an increase in the degree of biodegradation of aliphatic hydrocarbons with long carbon chains and PAH by a further 28.9%. In the next stage of soil treatment after biodegradation processes, which was characterized by an increased content of heavy metals (Zn, Pb, Cd) and naphthalene, chrysene, benzo(a)anthracene and benzo(ghi)perylene belonging to polycyclic aromatic hydrocarbons, phytoremediation with the use of Melilotus officinalis was applied. After the six-month phytoremediation process, the following was achieved: Zn content by 25.1%, Pb by 27.9%, Cd by 23.2% and TPH by 42.2% and PAH by 49.9%. The rate of removal of individual groups of hydrocarbons was in the decreasing order: C12–C18 > C6–C12 > C18–C25 > C25–C36. PAHs tended to be removed in the following order: chrysene > naphthalene > benzo(a)anthracene > benzo(ghi)perylene. The TF and BCF coefficients were calculated to assess the capacity of M. officinalis to accumulate metal in tissues, uptake from soil and transfer from roots to shoots. The values of TF translocation coefficients were, respectively, for Zn (0.44), Pb (0.12), Cd (0.40). The calculated BCF concentration factors (BCFroots > BCFshoots) show that heavy metals taken up by M. officinalis are mainly accumulated in the root tissues in the following order Zn > Pb > Cd, revealing a poor metal translocation from the root to the shoots. This process was carried out in laboratory conditions for a period of 6 months. The process of phytoremediation of contaminated soil using M. officinalis assisted with fertilization was monitored by means of toxicological tests: Microtox, Ostracodtoxkit FTM, MARA and PhytotoxkitTM. The performed phytotoxicity tests have indicated variable sensitivity of the tested plants on contaminants occurring in the studied soils, following the sequence: Lepidium sativum < Sorghum saccharatum < Sinapis alba. The sensitivity of toxicological tests was comparable and increased in the order: MARA < Ostracodtoxkit FTM < Microtox. The results of the toxicological monitoring as a function of the time of soil treatment, together with chemical analyses determining the content of toxicants in soil and biomass M. officinalis, clearly confirmed the effectiveness of the applied concept of bioremediation of soils contaminated with zinc, lead and cadmium in the presence of petroleum hydrocarbons.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Azar Vahabisani ◽  
Chunjiang An

AbstractOver the past decades, a large amount of petroleum pollutants has been released into the environment resulting from various activities related to petrochemicals. The discharge of wastewater with petrochemicals can pose considerable risk of harm to the human health and the environment. The use of adsorbents has received much consideration across the environmental field as an effective approach for organic pollutant removal. There is a particular interest in the use of biomass adsorbent as a promising environmentally-friendly and low-cost option for removing pollutants. In this article, we present a review of biomass-derived adsorbents for the removal of petroleum pollutants from water. The features of different adsorbents such as algae, fungi, and bacteria biomasses are summarized, as is the process of removing oil and PAHs using biomass-derived adsorbents. Finally, recommendations for future study are proposed.


2021 ◽  
Vol 236 ◽  
pp. 03003
Author(s):  
Gao Lijuan

To study the migration and variation rule of petroleum pollutants in soil and evaluate the soil condition, the field investigation is carried out in a refinery in Yunnan Province and the relevant data are collected. Then, soil sampling and leaching experiments are carried out on the land in the refinery. Finally, the experimental data are sorted out. The experimental results show that the pollution of surface soil in refinery is the most serious. Because of the adsorb-ability of the soil, the content of petroleum pollutants in the deep soil is less. The results of leaching experiments show that the diffusion process of petroleum pollutants is greatly affected by random factors in horizontal diffusion. In the vertical direction, the depth of soil will reduce the diffusion speed of petroleum pollutants. This exploration provides a reference for the study of the migration and variation rule of petroleum pollutants in soil.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 661 ◽  
Author(s):  
Breno Bezerra ◽  
Lindiane Bieseki ◽  
Djalma da Silva ◽  
Sibele Pergher

Wastewater from the oil industry is a major problem for aqueous environments due to its complexity and estimated volume of approximately 250 million barrels per day. The combination of these petroleum pollutants creates risks to human health, and their removal from the environment is considered a major problem in the world today. Thus, this work has the objective of studying the treatment of this type of effluent through the adsorption method using the following exchange materials: cationic, anionic, their combination by a sequential method, and a composite material. Zeolite A, a layered double hydroxide (LDH), and the new composite material formed by zeolite A and LDH structures were synthesized for this study. All were used for the simultaneous treatment of cations and anions in a complex sample such as water produced from petroleum production. The composite demonstrated an excellent ability to simultaneously remove cations and anions. The results obtained after the different treatment modes of the effluent using different materials varied from 85% to 100% for the removal of cations and from 56% to 99.7% for the removal of anions.


Sign in / Sign up

Export Citation Format

Share Document