scholarly journals Ankle Contracture Serial Casting Technique and Maintenance Orthosis

Burns Open ◽  
2021 ◽  
Author(s):  
Kerry Mikolaj
Author(s):  
Fred E. Hossler

Preparation of replicas of the complex arrangement of blood vessels in various organs and tissues has been accomplished by infusing low viscosity resins into the vasculature. Subsequent removal of the surrounding tissue by maceration leaves a model of the intricate three-dimensional anatomy of the blood vessels of the tissue not obtainable by any other procedure. When applied with care, the vascular corrosion casting technique can reveal fine details of the microvasculature including endothelial nuclear orientation and distribution (Fig. 1), locations of arteriolar sphincters (Fig. 2), venous valve anatomy (Fig. 3), and vessel size, density, and branching patterns. Because casts faithfully replicate tissue vasculature, they can be used for quantitative measurements of that vasculature. The purpose of this report is to summarize and highlight some quantitative applications of vascular corrosion casting. In each example, casts were prepared by infusing Mercox, a methyl-methacrylate resin, and macerating the tissue with 20% KOH. Casts were either mounted for conventional scanning electron microscopy, or sliced for viewing with a confocal laser microscope.


2017 ◽  
Vol 13 (2) ◽  
pp. 4640-4647
Author(s):  
A. M. Abdelghany ◽  
M.S. Meikhail ◽  
S.I. Badr ◽  
A. S. Momen

Thin film samples of pristine polyvinyl chloride (PVC), poly vinyldine fluoride (PVDF) in combination with their blend in addition to samples containing factorial mass fraction of multi wall carbon nano-tubes (MWCNTs) in the dopant level were prepared via routine casting technique using tetrahydrofurane (THF) as a common solvent. X-ray diffraction and transmission electron microscopy (TEM) depict the nano-scale (15-25 nm) of functionalized MWCNTs with no surface damage results from functionalization process.X-ray diffraction (XRD) shows a semi-crystalline nature of PVDF with evidence for more than one phase namely a and b phases. The fraction of b phase was calculated and correlated to the dopant content. FTIR optical absorption spectra revels a preservation of the main vibrational bands before and after addition of MWCNTs in the doping level with a presence of new small band 1151 cm-1 assigned for the interaction and complexation between constituents.


2018 ◽  
Author(s):  
Erik Leonhardt ◽  
Jeff M. Van Raden ◽  
David Miller ◽  
Lev N. Zakharov ◽  
Benjamin Aleman ◽  
...  

Extended carbon nanostructures, such as carbon nanotubes (CNTs), exhibit remarkable properties but are difficult to synthesize uniformly. Herein, we present a new class of carbon nanomaterials constructed via the bottom-up self-assembly of cylindrical, atomically-precise small molecules. Guided by supramolecular design principles and circle packing theory, we have designed and synthesized a fluorinated nanohoop that, in the solid-state, self-assembles into nanotube-like arrays with channel diameters of precisely 1.63 nm. A mild solution-casting technique is then used to construct vertical “forests” of these arrays on a highly-ordered pyrolytic graphite (HOPG) surface through epitaxial growth. Furthermore, we show that a basic property of nanohoops, fluorescence, is readily transferred to the bulk phase, implying that the properties of these materials can be directly altered via precise functionalization of their nanohoop building blocks. The strategy presented is expected to have broader applications in the development of new graphitic nanomaterials with π-rich cavities reminiscent of CNTs.


Author(s):  
Olga Komissarchuk ◽  
Hai Hao ◽  
Xing-lu Zhang ◽  
Vladimir Karpov

Author(s):  
Y Madhusudan Rao ◽  
Gayatri P ◽  
Ajitha M ◽  
P. Pavan Kumar ◽  
Kiran kumar

Present investigation comprises the study of ex-vivo skin flux and in-vivo pharmacokinetics of Thiocolchicoside (THC) from transdermal films. The films were fabricated by solvent casting technique employing combination of hydrophilic and hydrophobic polymers. A flux of 18.08 µg/cm2h and 13.37µg/cm2h was achieved for optimized formulations containing 1, 8-cineole and oleic acid respectively as permeation enhancers. The observed flux values were higher when compared to passive control (8.66 µg/cm2h). Highest skin permeation was observed when 1,8-cineole was used as chemical permeation enhancer and it considerably (2-2.5 fold) improved the THC transport across the rat skin. In vivo studies were performed in rabbits and samples were analysed by LC-MS-MS. The mean area under the curve (AUC) values of transdermal film showed about 2.35 times statistically significant (p<0.05) improvement in bioavailability when compared with the oral administration of THC solution. The developed transdermal therapeutic systems using chemical permeation enhancers were suitable for drugs like THC in effective management of muscular pain.    


Sign in / Sign up

Export Citation Format

Share Document