scholarly journals Multi-scale mesh saliency based on low-rank and sparse analysis in shape feature space

2015 ◽  
Vol 35-36 ◽  
pp. 206-214 ◽  
Author(s):  
Shengfa Wang ◽  
Nannan Li ◽  
Shuai Li ◽  
Zhongxuan Luo ◽  
Zhixun Su ◽  
...  
2018 ◽  
Vol 57 (4S) ◽  
pp. 04FF04
Author(s):  
Aiwen Luo ◽  
Fengwei An ◽  
Xiangyu Zhang ◽  
Lei Chen ◽  
Zunkai Huang ◽  
...  

2019 ◽  
Vol 11 (14) ◽  
pp. 1678 ◽  
Author(s):  
Yongyong Fu ◽  
Ziran Ye ◽  
Jinsong Deng ◽  
Xinyu Zheng ◽  
Yibo Huang ◽  
...  

Marine aquaculture plays an important role in seafood supplement, economic development, and coastal ecosystem service provision. The precise delineation of marine aquaculture areas from high spatial resolution (HSR) imagery is vital for the sustainable development and management of coastal marine resources. However, various sizes and detailed structures of marine objects make it difficult for accurate mapping from HSR images by using conventional methods. Therefore, this study attempts to extract marine aquaculture areas by using an automatic labeling method based on the convolutional neural network (CNN), i.e., an end-to-end hierarchical cascade network (HCNet). Specifically, for marine objects of various sizes, we propose to improve the classification performance by utilizing multi-scale contextual information. Technically, based on the output of a CNN encoder, we employ atrous convolutions to capture multi-scale contextual information and aggregate them in a hierarchical cascade way. Meanwhile, for marine objects with detailed structures, we propose to refine the detailed information gradually by using a series of long-span connections with fine resolution features from the shallow layers. In addition, to decrease the semantic gaps between features in different levels, we propose to refine the feature space (i.e., channel and spatial dimensions) using an attention-based module. Experimental results show that our proposed HCNet can effectively identify and distinguish different kinds of marine aquaculture, with 98% of overall accuracy. It also achieves better classification performance compared with object-based support vector machine and state-of-the-art CNN-based methods, such as FCN-32s, U-Net, and DeeplabV2. Our developed method lays a solid foundation for the intelligent monitoring and management of coastal marine resources.


Author(s):  
Caixia Sun ◽  
Lian Zou ◽  
Cien Fan ◽  
Yu Shi ◽  
Yifeng Liu

Deep neural networks are vulnerable to adversarial examples, which can fool models by adding carefully designed perturbations. An intriguing phenomenon is that adversarial examples often exhibit transferability, thus making black-box attacks effective in real-world applications. However, the adversarial examples generated by existing methods typically overfit the structure and feature representation of the source model, resulting in a low success rate in a black-box manner. To address this issue, we propose the multi-scale feature attack to boost attack transferability, which adjusts the internal feature space representation of the adversarial image to get far to the internal representation of the original image. We show that we can select a low-level layer and a high-level layer of the source model to conduct the perturbations, and the crafted adversarial examples are confused with original images, not just in the class but also in the feature space representations. To further improve the transferability of adversarial examples, we apply reverse cross-entropy loss to reduce the overfitting further and show that it is effective for attacking adversarially trained models with strong defensive ability. Extensive experiments show that the proposed methods consistently outperform the iterative fast gradient sign method (IFGSM) and momentum iterative fast gradient sign method (MIFGSM) under the challenging black-box setting.


2018 ◽  
Vol 8 (9) ◽  
pp. 1601
Author(s):  
Chaoqun Hong ◽  
Zhiqiang Zeng ◽  
Xiaodong Wang ◽  
Weiwei Zhuang

Image-based age estimation is a challenging task since there are ambiguities between the apparent age of face images and the actual ages of people. Therefore, data-driven methods are popular. To improve data utilization and estimation performance, we propose an image-based age estimation method. Theoretically speaking, the key idea of the proposed method is to integrate multi-modal features of face images. In order to achieve it, we propose a multi-modal learning framework, which is called Multiple Network Fusion with Low-Rank Representation (MNF-LRR). In this process, different deep neural network (DNN) structures, such as autoencoders, Convolutional Neural Networks (CNNs), Recursive Neural Networks (RNNs), and so on, can be used to extract semantic information of facial images. The outputs of these neural networks are then represented in a low-rank feature space. In this way, feature fusion is obtained in this space, and robust multi-modal image features can be computed. An experimental evaluation is conducted on two challenging face datasets for image-based age estimation extracted from the Internet Move Database (IMDB) and Wikipedia (WIKI). The results show the effectiveness of the proposed MNF-LRR.


Author(s):  
Shanshan Zhao ◽  
Xi Li ◽  
Omar El Farouk Bourahla

As an important and challenging problem in computer vision, learning based optical flow estimation aims to discover the intrinsic correspondence structure between two adjacent video frames through statistical learning. Therefore, a key issue to solve in this area is how to effectively model the multi-scale correspondence structure properties in an adaptive end-to-end learning fashion. Motivated by this observation, we propose an end-to-end multi-scale correspondence structure learning (MSCSL) approach for optical flow estimation. In principle, the proposed MSCSL approach is capable of effectively capturing the multi-scale inter-image-correlation correspondence structures within a multi-level feature space from deep learning. Moreover, the proposed MSCSL approach builds a spatial Conv-GRU neural network model to adaptively model the intrinsic dependency relationships among these multi-scale correspondence structures. Finally, the above procedures for correspondence structure learning and multi-scale dependency modeling are implemented in a unified end-to-end deep learning framework. Experimental results on several benchmark datasets demonstrate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document