scholarly journals On spatial discretization of evolutionary differential equations on the periodic domain with a mixed derivative

2019 ◽  
Vol 358 ◽  
pp. 221-240 ◽  
Author(s):  
S. Sato ◽  
T. Matsuo
Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 257 ◽  
Author(s):  
Imtiaz Ahmad ◽  
Muhammad Riaz ◽  
Muhammad Ayaz ◽  
Muhammad Arif ◽  
Saeed Islam ◽  
...  

In this paper, numerical simulation of one, two and three dimensional partial differential equations (PDEs) are obtained by local meshless method using radial basis functions (RBFs). Both local and global meshless collocation procedures are used for spatial discretization, which convert the given PDEs into a system of ODEs. Multiquadric, Gaussian and inverse quadratic RBFs are used for spatial discretization. The obtained system of ODEs has been solved by different time integrators. The salient feature of the local meshless method (LMM) is that it does not require mesh in the problem domain and also far less sensitive to the variation of shape parameter as compared to the global meshless method (GMM). Both rectangular and non rectangular domains with uniform and scattered nodal points are considered. Accuracy, efficacy and ease implementation of the proposed method are shown via test problems.


Acta Numerica ◽  
2010 ◽  
Vol 19 ◽  
pp. 209-286 ◽  
Author(s):  
Marlis Hochbruck ◽  
Alexander Ostermann

In this paper we consider the construction, analysis, implementation and application of exponential integrators. The focus will be on two types of stiff problems. The first one is characterized by a Jacobian that possesses eigenvalues with large negative real parts. Parabolic partial differential equations and their spatial discretization are typical examples. The second class consists of highly oscillatory problems with purely imaginary eigenvalues of large modulus. Apart from motivating the construction of exponential integrators for various classes of problems, our main intention in this article is to present the mathematics behind these methods. We will derive error bounds that are independent of stiffness or highest frequencies in the system.Since the implementation of exponential integrators requires the evaluation of the product of a matrix function with a vector, we will briefly discuss some possible approaches as well. The paper concludes with some applications, in which exponential integrators are used.


Author(s):  
Lars Houbak-Jensen ◽  
Anders Holten ◽  
Morten Boje Blarke ◽  
Eckhard A. Groll ◽  
Ali Shakouri ◽  
...  

We investigated the dynamics of a transcritical CO2 heat pump system including hot and cold thermal storages, which makes up the concept “thermal battery”. The analytical model is used for the study of the dynamics of the system involving simultaneous supply of heating and cooling for buildings. The model includes the dynamics of the gas cooler, evaporator and the thermal storages, while the compressor and the expansion valve are considered quasi-static. The heat transfer in the dynamically modeled components is described by partial differential equations (PDEs) consisting of heat conduction, convection, and source terms. Each component is divided into a number of volumes adjusted according to the required precision and reasonable computational time. We applied two discretization schemes in order to find a numerical solution to the PDEs. The spatial discretization for the heat exchangers is performed by using the upwind scheme, where the fluid properties are individually calculated within each volume. Due to the discrete events in form of tapping and loading (or charging and discharging) of the heat storages, the discretization approach takes into account the sharp spatial transitions within the thermal storages. Therefore, the method of lines in combination with the Superbee slope-limiter was applied for the spatial discretization for high resolution calculation. The modeling approach results in a set of algebraic and ordinary differential equations (ODEs), hence the model becomes an algebraic differential equation problem, which we solved by using MATLAB solver ODE15s. This extended model was used to simulate a dynamic response of the case with varying heating and cooling consumption over a period of 24 hours in a building. The heating and cooling energy consumption follow a sinusoidal and continuous pattern. The results include the effect on both the outlet temperatures and the system coefficient-of-performance (COP). The outlet energy from the hot storage and the cold storage is used for heating tap water and a chilled water space cooling application subject to temperature requirements. Dimensioning of both storages is crucial for obtaining the required temperatures. The model identifies the critical storage levels required to satisfy the periodic but out-of-phase combination of heating and cooling demands. The volume of the cold storage will have to be considerably larger than the hot storage due to the lower temperature difference.


2019 ◽  
Vol 5 (4) ◽  
pp. 106-113
Author(s):  
A. Kadochnikov ◽  
A. Kazantsev ◽  
O. Mishukov ◽  
S. Shigorev

The resource problems of the traditional use of detailed radar images for reliable recognition of space objects are shown. The urgent task of forming a new type of model of radar images of space objects to determine the signs of their recognition is posed. Corresponding mathematical models of such images based on stochastic differential equations of elliptic type are presented. The adequacy of the developed models to the real radar images of a space object was assessed. It is established that for the description of radar images of space objects the most suitable is a modified model in the form of a mixed derivative of an elliptical model. To test the hypothesis about the possibility of using the radar image model when constructing descriptive recognition signs, an experiment was conducted to distinguish four different types of space objects. The experimental results showed the possibility of using a mixed derivative of the elliptical model to determine signs of recognition of space objects.


Author(s):  
Hao Zhu ◽  
Yumei Hu ◽  
Weidong Zhu ◽  
Haiqiang Long

In this study, a generic mathematical model for calculating the natural frequencies and the dynamic responses of a typical front-end accessory drive system with any number of pulleys and arbitrary configurations of the tensioner and pulleys is established. The belt bending stiffness and the pulley eccentricities are considered in this model, and their influences on the natural frequency and the dynamic responses of the front-end accessory drive system are examined. A generic spatial discretization method and a Galerkin discretization method, which uses Lagrange multipliers to enhance the boundary conditions, are presented to discretize the continuous belt spans and to transform the governing partial differential equations into ordinary differential equations. The accuracies of the generic spatial discretization method and the Galerkin discretization method are validated by modal tests, and the advantages of the generic spatial discretization method with respect to the efficiency and the convenience of implementation are assessed by comparing the generic spatial discretization method with the Galerkin discretization method and the two-layer iteration approach. The dynamic responses of the typical front-end accessory drive system at different operational velocities are calculated from the governing ordinary differential equations derived from these two methods. It is shown that large vibration amplitudes occur in certain belt spans owing to the resonance conditions or the beat phenomena in certain operational conditions and that the belt bending stiffness has a negligible influence on the vibrations of the belt drive system because its value is small.


Sign in / Sign up

Export Citation Format

Share Document