scholarly journals Optimal mass transport-based adaptive mesh method for phase-field models of two-phase fluid flows

2016 ◽  
Vol 72 (9) ◽  
pp. 2181-2193 ◽  
Author(s):  
Mohamed H.M. Sulman
2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Haobo Hua ◽  
Jaemin Shin ◽  
Junseok Kim

In this paper, we review and compare the level set, phase-field, and immersed boundary methods for incompressible two-phase flows. The models are based on modified Navier–Stokes and interface evolution equations. We present the basic concepts behind these approaches and discuss the advantages and disadvantages of each method. We also present numerical solutions of the three methods and perform characteristic numerical experiments for two-phase fluid flows.


2008 ◽  
Vol 2008.21 (0) ◽  
pp. 416-417
Author(s):  
Naoki TAKADA ◽  
Junichi MATSUMOTO ◽  
Sohei MATSUMOTO ◽  
Naoki ICHIKAWA

2011 ◽  
Vol 69 (4) ◽  
pp. 842-858 ◽  
Author(s):  
Yibao Li ◽  
Eunok Jung ◽  
Wanho Lee ◽  
Hyun Geun Lee ◽  
Junseok Kim

1998 ◽  
Vol 09 (08) ◽  
pp. 1383-1391 ◽  
Author(s):  
Yu Chen ◽  
Shulong Teng ◽  
Takauki Shukuwa ◽  
Hirotada Ohashi

A model with a volumetric stress tensor added to the Navier–Stokes Equation is used to study two-phase fluid flows. The implementation of such an interface model into the lattice-Boltzmann equation is derived from the continuous Boltzmann BGK equation with an external force term, by using the discrete coordinate method. Numerical simulations are carried out for phase separation and "dam breaking" phenomena.


2020 ◽  
Vol 2020.30 (0) ◽  
pp. 2105
Author(s):  
Yoshinori KOIKE ◽  
Takayuki YAMADA ◽  
Benliang ZHU ◽  
Kazuhiro IZUI ◽  
Shinji NISHIWAKI

Sign in / Sign up

Export Citation Format

Share Document