Analysis of the parametric models of passive scalar transport used in the lattice Boltzmann method

2020 ◽  
Vol 79 (5) ◽  
pp. 1503-1524
Author(s):  
Gerasim V. Krivovichev
2017 ◽  
Vol 14 (01) ◽  
pp. 1750002 ◽  
Author(s):  
Yi-Kun Wei ◽  
Xu-Qu Hu

Two-dimensional simulations of channel flow past an array of cylinders are carried out at high Reynolds numbers. Considering the thickness fluctuating effect on the equation of motion, a modified lattice Boltzmann method (LBM) is proposed. Special attention is paid to investigate the thickness fluctuations and vortex shedding mechanisms between 11 cylinders. Results for the velocity and vorticity differences are provided, as well as for the energy density and enstrophy spectra. The numerical results coincide very well with some published experimental data that was obtained by turbulent soap films. The spectra extracted from the velocity and vorticity fields are displayed from simulations, along with the thickness fluctuation spectrum H(k). Our results show that the statistics of thickness fluctuations resemble closely those of a passive scalar in turbulent flows.


2021 ◽  
pp. 135-135
Author(s):  
Yuhan Li ◽  
Minxia Li ◽  
Yusheng Hu ◽  
Jia Xu ◽  
Liping Ren

In this paper, a novel model to investigate leakage of gaseous working fluid in pressured devices with lubricating oil was created with Lattice Boltzmann method and Shan-Chen multiphase model. A method to adapt actual pressure-density relation into the lattice via a self-adapting timestep and simplify the simulation of compressible fluid was developed. A model to simulate two-phased leakage with lubricating oil was created with a combination of Shan-Chen model and passive scalar model. The model can realize the phase distribution simulation in the leakage field without causing the pressure and the inter-phase interactions to overlap. This model is also able to be combined with other multiphase models. After a group of preliminary tests of the model, the characteristics of phase distribution and leakage were investigated qualitatively. Five types of phase distribution in the simulation results were classified, which are: uniformed distribution, sphered drips, gas channel, blocked channel and slug bubbles. The results of simulations show good conformance with actual leakage patterns. Preliminary discussions about the leakage features are made upon the results. However, these simulation results are only qualitative and cannot show the quantitative features in leakages. More experimental investigations should be carried out to realize correlations to the model.


Author(s):  
A. V. Mirzamoghadam ◽  
K. Molla-Hosseini ◽  
I. Gonzalez-Martino ◽  
F. Polidoro

This paper is a continuation of a previous comparison dealing with URANS-based validation of the ASU-Honeywell turbine stage mainstream/disc-cavity interaction rig data. Here, the validation is with a CFD code named PowerFLOW which is based on the Lattice Boltzmann Method (or LBM). Transient LBM simulations were conducted across the previously published purge flows (Cw of 1540 to 6161), and at the higher mainstream flow condition of 2300 cfm (1.086m3/s). Sensitivity of convergence on results was investigated by increasing the number of revolutions, as well as by varying the passive scalar and temperature difference assumptions between mainstream and purge flow. Results indicate that at lower purge flow, LBM was able to significantly improve validation of sealing effectiveness measurements. For the intermediate purge flows, however, there is a departure from what the data shows. Finally, at the higher purge flow cases, LBM prediction improves at the outer radial location as compared to URANS. Moreover, on pressure validation, it has closed the gap in matching the measured steady pressures inside the lower disc cavity except at the highest purge flow. In the critical upper rim cavity, the gap between the two methods closes as purge flow increases. The outcome from this comparative tool validation study is that at the low critical purge flow case where ingestion is most critical as well as at the upper rim cavity location, sealing effectiveness predictions were significantly improved. The paper also discusses the current limitations of LBM.


Sign in / Sign up

Export Citation Format

Share Document