One-carbon metabolism for cancer diagnostic and therapeutic approaches

2020 ◽  
Vol 470 ◽  
pp. 141-148 ◽  
Author(s):  
Ayumu Asai ◽  
Masamitsu Konno ◽  
Jun Koseki ◽  
Masateru Taniguchi ◽  
Andrea Vecchione ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5088
Author(s):  
Shotaro Tatekawa ◽  
Ken Ofusa ◽  
Ryota Chijimatsu ◽  
Andrea Vecchione ◽  
Keisuke Tamari ◽  
...  

As cancer is a genetic disease, methylation defines a biologically malignant phenotype of cancer in the association of one-carbon metabolism-dependent S-adenosylmethionine (SAM) as a methyl donor in each cell. Methylated substances are involved in intracellular metabolism, but via intercellular communication, some of these can also be secreted to affect other substances. Although metabolic analysis at the single-cell level remains challenging, studying the “methylosystem” (i.e., the intercellular and intracellular communications of upstream regulatory factors and/or downstream effectors that affect the epigenetic mechanism involving the transfer of a methyl group from SAM onto the specific positions of nucleotides or other metabolites in the tumor microenvironment) and tracking these metabolic products are important research tasks for understanding spatial heterogeneity. Here, we discuss and highlight the involvement of RNA and nicotinamide, recently emerged targets, in SAM-producing one-carbon metabolism in cancer cells, cancer-associated fibroblasts, and immune cells. Their significance and implications will contribute to the discovery of efficient methods for the diagnosis of and therapeutic approaches to human cancer.


2010 ◽  
Vol 80 (45) ◽  
pp. 319-329 ◽  
Author(s):  
Allyson A. West ◽  
Marie A. Caudill

Folate and choline are water-soluble micronutrients that serve as methyl donors in the conversion of homocysteine to methionine. Inadequacy of these nutrients can disturb one-carbon metabolism as evidenced by alterations in circulating folate and/or plasma homocysteine. Among common genetic variants that reside in genes regulating folate absorptive and metabolic processes, homozygosity for the MTHFR 677C > T variant has consistently been shown to have robust effects on status markers. This paper will review the impact of genetic variants in folate-metabolizing genes on folate and choline bioefficacy. Nutrient-gene and gene-gene interactions will be considered along with the need to account for these genetic variants when updating dietary folate and choline recommendations.


Proceedings ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 19
Author(s):  
Nicola Gillies ◽  
Amber M. Milan ◽  
Pankaja Sharma ◽  
Brenan Durainayagam ◽  
Sarah M. Mitchell ◽  
...  

Background: Maintaining optimal status of folate and metabolically [...]


2021 ◽  
Vol 21 (4) ◽  
pp. 206-206
Author(s):  
Felix Clemens Richter ◽  
Alexander J. Clarke

Toxicology ◽  
2021 ◽  
pp. 152803
Author(s):  
Ahlam Abuawad ◽  
Anne K. Bozack ◽  
Roheeni Saxena ◽  
Mary V. Gamble

Sign in / Sign up

Export Citation Format

Share Document