Thyroid receptor-interacting protein 13 and EGFR form a feedforward loop promoting glioblastoma growth

2020 ◽  
Vol 493 ◽  
pp. 156-166
Author(s):  
Lulu Hu ◽  
Dachuan Shen ◽  
Dapeng Liang ◽  
Ji Shi ◽  
Chunyan Song ◽  
...  
2006 ◽  
Vol 174 (3) ◽  
pp. 447-458 ◽  
Author(s):  
Norio Takizawa ◽  
Tara C. Smith ◽  
Thomas Nebl ◽  
Jessica L. Crowley ◽  
Stephen J. Palmieri ◽  
...  

Cell–substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)—a peripheral membrane protein that binds myosin II and F-actin in such cells—negatively regulates stress fibers, FAs, and cell–substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptor–interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself. SV and TRIP6 colocalize within large FAs, where TRIP6 may help recruit SV. RNAi-mediated decreases in either protein increase cell adhesion to fibronectin. TRIP6 partially rescues SV effects on stress fibers and FAs, apparently by mislocating SV away from FAs. Thus, SV interactions with TRIP6 at FAs promote loss of FA structure and function. SV and TRIP6 binding partners suggest several specific mechanisms through which the SV–TRIP6 interaction may regulate FA maturation and/or disassembly.


2019 ◽  
Vol 25 ◽  
pp. 6660-6668 ◽  
Author(s):  
Lijuan Niu ◽  
Zhiqiang Gao ◽  
Yubin Cui ◽  
Xiaoqing Yang ◽  
Haiyang Li

2003 ◽  
Vol 23 (1) ◽  
pp. 70-79 ◽  
Author(s):  
Laura M. Hoffman ◽  
David A. Nix ◽  
Beverly Benson ◽  
Ray Boot-Hanford ◽  
Erika Gustafsson ◽  
...  

ABSTRACT Zyxin is an evolutionarily conserved protein that is concentrated at sites of cell adhesion, where it associates with members of the Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) family of cytoskeletal regulators and is postulated to play a role in cytoskeletal dynamics and signaling. Zyxin transcripts are detected throughout murine embryonic development, and the protein is widely expressed in adults. Here we used a reverse genetic approach to examine the consequences of loss of zyxin function in the mouse. Mice that lack zyxin function are viable and fertile and display no obvious histological abnormalities in any of the organs examined. Because zyxin contributes to the localization of Ena/VASP family members at certain subcellular locations, we carefully examined the zyxin−/− mice for evidence of defects that have been observed when Ena/VASP proteins are compromised in the mouse. Specifically, we evaluated blood platelet function, nervous system development, and skin architecture but did not detect any defects in these systems. Zyxin is the founding member of a family of proteins that also includes the lipoma preferred partner (LPP) and thyroid receptor-interacting protein 6 (TRIP6). These zyxin family members display patterns of expression that significantly overlap that of zyxin. Western blot analysis indicates that there is no detectable upregulation of either LPP or TRIP6 expression in tissues derived from zyxin-null mice. Because zyxin family members may have overlapping functions, a comprehensive understanding of the role of these proteins in the mouse will require the generation of compound mutations in which multiple zyxin family members are simultaneously compromised.


2013 ◽  
Vol 105 (11) ◽  
pp. 535-547 ◽  
Author(s):  
Thomas G. P. Grunewald ◽  
Semjon Willier ◽  
Dirk Janik ◽  
Rebekka Unland ◽  
Cora Reiss ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2338
Author(s):  
Ssu-Han Chen ◽  
Hong-Han Lin ◽  
Yao-Feng Li ◽  
Wen-Chiuan Tsai ◽  
Dueng-Yuan Hueng

The prognosis of malignant gliomas such as glioblastoma multiforme (GBM) has remained poor due to limited therapeutic strategies. Thus, it is pivotal to determine prognostic factors for gliomas. Thyroid Receptor Interacting Protein 13 (TRIP13) was found to be overexpressed in several solid tumors, but its role and clinical significance in gliomas is still unclear. Here, we conducted a comprehensive expression analysis of TRIP13 to determine the prognostic values. Gene expression profiles of the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA) and GSE16011 dataset showed increased TRIP13 expression in advanced stage and worse prognosis in IDH-wild type lower-grade glioma. We performed RT-PCR and Western blot to validate TRIP13 mRNA expression and protein levels in GBM cell lines. TRIP13 co-expressed genes via database screening were regulated by essential cancer-related upstream regulators (such as TP53 and FOXM1). Then, TCGA analysis revealed that more TRIP13 promoter hypomethylation was observed in GBM than in low-grade glioma. We also inferred that the upregulated TRIP13 levels in gliomas could be regulated by dysfunction of miR-29 in gliomas patient cohorts. Moreover, TRIP13-expressing tumors not only had higher aneuploidy but also tended to reduce the ratio of CD8+/Treg, which led to a worse survival outcome. Overall, these findings demonstrate that TRIP13 has with multiple functions in gliomas, and they may be crucial for therapeutic potential.


2013 ◽  
Vol 55 ◽  
pp. 1-15 ◽  
Author(s):  
Laura E. Gallagher ◽  
Edmond Y.W. Chan

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101. Much evidence indicates that mTORC1 [mechanistic (also known as mammalian) target of rapamycin complex 1] signals downstream to the ULK1 complex to negatively regulate autophagy. In this chapter, we discuss our understanding on how the mTORC1–ULK1 signalling axis drives the initial steps of autophagy induction. We conclude with a summary of our growing appreciation of the additional cellular pathways that interconnect with the core mTORC1–ULK1 signalling module.


Sign in / Sign up

Export Citation Format

Share Document