Measurement of the feedback coefficient by monitoring the power difference at power jump point in self-mixing vibration signal

2019 ◽  
Vol 19 (5) ◽  
pp. 646-650
Author(s):  
Chenchen Wang ◽  
Junfeng Zhou ◽  
Yunkun Zhao ◽  
Youze Chen ◽  
Benli Yu ◽  
...  
Author(s):  
Elizabeth Shakman Hurd

In recent years, North American and European nations have sought to legally remake religion in other countries through an unprecedented array of international initiatives. Policymakers have rallied around the notion that the fostering of religious freedom, interfaith dialogue, religious tolerance, and protections for religious minorities are the keys to combating persecution and discrimination. This book argues that these initiatives create the very social tensions and divisions they are meant to overcome. It looks at three critical channels of state-sponsored intervention: international religious freedom advocacy, development assistance and nation building, and international law. It shows how these initiatives make religious difference a matter of law, resulting in a divide that favors forms of religion authorized by those in power and excludes other ways of being and belonging. In exploring the dizzying power dynamics and blurred boundaries that characterize relations between “expert religion,” “governed religion,” and “lived religion,” the book charts new territory in the study of religion in global politics. The book provides new insights into today's most pressing dilemmas of power, difference, and governance.


Author(s):  
Rosa Delima ◽  
Gregorius Titis Indrajaya ◽  
Abednego Kristiawan Takaredase ◽  
Ignatia Dhian E.K.R. ◽  
Antonius Rachmat C
Keyword(s):  

2017 ◽  
Vol 1 (20) ◽  
pp. 63-74 ◽  
Author(s):  
Arkadiusz Rychlik ◽  
Krzysztof Ligier

This paper discusses the method used to identify the process involving fatigue cracking of samples on the basis of selected vibration signal characteristics. Acceleration of vibrations has been chosen as a diagnostic signal in the analysis of sample cross section. Signal characteristics in form of change in vibration amplitudes and corresponding changes in FFT spectrum have been indicated for the acceleration. The tests were performed on a designed setup, where destruction process was caused by the force of inertia of the sample. Based on the conducted tests, it was found that the demonstrated sample structure change identification method may be applied to identify the technical condition of the structure in the aspect of loss of its continuity and its properties (e.g.: mechanical and fatigue cracks). The vibration analysis results have been verified by penetration and visual methods, using a scanning electron microscope.


Sensors ◽  
2015 ◽  
Vol 15 (9) ◽  
pp. 23903-23926 ◽  
Author(s):  
Mariela Cerrada ◽  
René Sánchez ◽  
Diego Cabrera ◽  
Grover Zurita ◽  
Chuan Li

2021 ◽  
Vol 18 (4) ◽  
pp. 172988142110192
Author(s):  
Ben Zhang ◽  
Denglin Zhu

Innovative applications in rapidly evolving domains such as robotic navigation and autonomous (driverless) vehicles rely on motion planning systems that meet the shortest path and obstacle avoidance requirements. This article proposes a novel path planning algorithm based on jump point search and Bezier curves. The proposed algorithm consists of two main steps. In the front end, the improved heuristic function based on distance and direction is used to reduce the cost, and the redundant turning points are trimmed. In the back end, a novel trajectory generation method based on Bezier curves and a straight line is proposed. Our experimental results indicate that the proposed algorithm provides a complete motion planning solution from the front end to the back end, which can realize an optimal trajectory from the initial point to the target point used for robot navigation.


Author(s):  
Yuta Tsuzuki ◽  
Shigeru Shimamoto ◽  
Zhenni Pan
Keyword(s):  

2021 ◽  
Vol 17 (1) ◽  
pp. 155014772199170
Author(s):  
Jinping Yu ◽  
Deyong Zou

The speed of drilling has a great relationship with the rock breaking efficiency of the bit. Based on the above background, the purpose of this article is to predict the position of shallow bit based on the vibration signal monitoring of bit broken rock. In this article, first, the mechanical research of drill string is carried out; the basic changes of the main mechanical parameters such as the axial force, torque, and bending moment of drill string are clarified; and the dynamic equilibrium equation theory of drill string system is analyzed. According to the similarity criterion, the corresponding relationship between drilling process parameters and laboratory test conditions is determined. Then, the position monitoring test system of the vibration bit is established. The acoustic emission signal and the drilling force signal of the different positions of the bit in the process of vibration rock breaking are collected synchronously by the acoustic emission sensor and the piezoelectric force sensor. Then, the denoised acoustic emission signal and drilling force signal are analyzed and processed. The mean value, variance, and mean square value of the signal are calculated in the time domain. The power spectrum of the signal is analyzed in the frequency domain. The signal is decomposed by wavelet in the time and frequency domains, and the wavelet energy coefficients of each frequency band are extracted. Through the wavelet energy coefficient calculated by the model, combined with the mean, variance, and mean square error of time-domain signal, the position of shallow buried bit can be analyzed and predicted. Finally, by fitting the results of indoor experiment and simulation experiment, it can be seen that the stress–strain curve of rock failure is basically the same, and the error is about 3.5%, which verifies the accuracy of the model.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Sign in / Sign up

Export Citation Format

Share Document