A close look at the structural features and reaction conditions that modulate the synthesis of low and high molecular weight fructans by levansucrases

2019 ◽  
Vol 219 ◽  
pp. 130-142 ◽  
Author(s):  
Maria Elena Ortiz-Soto ◽  
Jaime R. Porras-Domínguez ◽  
Jürgen Seibel ◽  
Agustín López-Munguía
2001 ◽  
Vol 702 ◽  
Author(s):  
Ferdinando F. Bruno ◽  
Ramaswamy Nagarajan ◽  
Jayant Kumar ◽  
Lynne A. Samuelson

ABSTRACTPhenolic polymers and phenol formaldehyde resins are of great interest for a number of electronic and industrial applications. Unfortunately, the toxic nature of the starting materials (formaldehyde) and harsh reaction conditions required for the synthesis of these polymers have severely limited their use in today’s markets. We present here an alternative, biocatalytic approach where the enzyme horseradish peroxidase is used to polymerize phenol in the presence of a template such as polyethylene oxide. Here the template serves as a surfactant that can both emulsify the phenol and polyphenol chains during polymerization and maintain water/solvent solubility of the final polyphenol/template complex. The reactants and the reaction conditions of this approach are mild and result in high molecular weight, electrically and optically active, water-soluble complexes of polyphenol and the template used. High molecular weight water-soluble polyphenol/polyethylene oxide complexes were formed. The ionic conductivity and potential use of these polymers as polyelectrolytes for battery and solution cell applications will be discussed.


Genome ◽  
2020 ◽  
Vol 63 (3) ◽  
pp. 155-167
Author(s):  
Xiaoyu Li ◽  
Yu Li ◽  
Hassan Karim ◽  
Yue Li ◽  
Xiaojuan Zhong ◽  
...  

In our previous work, a novel high-molecular-weight glutenin subunit (HMW-GS) with an extremely large molecular weight from Aegilops sharonensis was identified that may contribute to excellent wheat (Triticum aestivum) processing quality and increased dough strength, and we further generated HMW-GS homozygous lines by crossing. In this study, we crossed the HMW-GS homozygous line 66-17-52 with ‘Chinese Spring’ Ph1 mutant CS ph1b to induce chromosome recombination between wheat and Ae. sharonensis. SDS-PAGE was used to identify 19 derived F2 lines with the HMW-GSs of Ae sharonensis. The results of non-denaturing fluorescence in situ hybridization (ND-FISH) indicated that lines 6-1 and 6-7 possessed a substitution of both 5D chromosomes by a pair of 1Ssh chromosomes. Further verification by newly developed 1Ssh-specific chromosome markers showed that these two lines amplified the expected fragment. Thus, it was concluded that lines 6-1 and 6-7 are 1Ssh(5D) chromosome substitution lines. The 1Ssh(5D) chromosome substitution lines, possessing alien subunits with satisfactory quality-associated structural features of large repetitive domains and increased number of subunits, may have great potential in strengthening the viscosity and elasticity of dough made from wheat flour. Therefore, these substitution lines can be used for wheat quality improvement and further production of 1Ssh translocation lines.


Author(s):  
Chih-Tsung Yang ◽  
Jen-Chia Wu ◽  
Ying-Chih Chang

Despite huge effort has been devoted to the design of the initiators and reaction conditions, it remains challenging to synthesize high molecular weight polypeptides with conventional solution phase synthesis. In this work, surface-initiated vapor deposition polymerization (SI-VDP) was utilized to graft synthetic polypeptides poly (γ-benzyl L-glutamate) (PBLG) from polystyrene (PS) resin beads by ring-opening polymerization of N-carboxyanhydrides (NCAs). It was demonstrated for the first time that high molecular weight bulk PBLG (> 500,000) could be readily obtained within one hour via solvent-free synthetic method which paves the way for the synthesis of copolypeptides with high molecular weight.


2001 ◽  
Vol 13 (2) ◽  
pp. S189-S196 ◽  
Author(s):  
Sung-Il Moon ◽  
Ikuo Taniguchi ◽  
Masatoshi Miyamoto ◽  
Yoshiharu Kimura ◽  
Chan-Woo Lee

Author(s):  
Richard B. Vallee

Microtubules are involved in a number of forms of intracellular motility, including mitosis and bidirectional organelle transport. Purified microtubules from brain and other sources contain tubulin and a diversity of microtubule associated proteins (MAPs). Some of the high molecular weight MAPs - MAP 1A, 1B, 2A, and 2B - are long, fibrous molecules that serve as structural components of the cytamatrix. Three MAPs have recently been identified that show microtubule activated ATPase activity and produce force in association with microtubules. These proteins - kinesin, cytoplasmic dynein, and dynamin - are referred to as cytoplasmic motors. The latter two will be the subject of this talk.Cytoplasmic dynein was first identified as one of the high molecular weight brain MAPs, MAP 1C. It was determined to be structurally equivalent to ciliary and flagellar dynein, and to produce force toward the minus ends of microtubules, opposite to kinesin.


1993 ◽  
Vol 70 (06) ◽  
pp. 0978-0983 ◽  
Author(s):  
Edelmiro Regano ◽  
Virtudes Vila ◽  
Justo Aznar ◽  
Victoria Lacueva ◽  
Vicenta Martinez ◽  
...  

SummaryIn 15 patients with acute myocardial infarction who received 1,500,000 U of streptokinase, the gradual appearance of newly synthesized fibrinogen and the fibrinopeptide release during the first 35 h after SK treatment were evaluated. At 5 h the fibrinogen circulating in plasma was observed as the high molecular weight fraction (HMW-Fg). The concentration of HMW-Fg increased continuously, and at 20 h reached values higher than those obtained from normal plasma. HMW-Fg represented about 95% of the total fibrinogen during the first 35 h. The degree of phosphorylation of patient fibrinogen increased from 30% before treatment to 65% during the first 5 h, and then slowly declined to 50% at 35 h.The early rates of fibrinopeptide A (FPA) and phosphorylated fibrinopeptide A (FPAp) release are higher in patient fibrinogen than in isolated normal HMW-Fg and normal fibrinogen after thrombin addition. The early rate of fibrinopeptide B (FPB) release is the same for the three fibrinogen groups. However, the late rate of FPB release is higher in patient fibrinogen than in normal HMW-Fg and normal fibrinogen. Therefore, the newly synthesized fibrinogen clots faster than fibrinogen in the normal steady state.In two of the 15 patients who had occluded coronary arteries after SK treatment the HMW-Fg and FPAp levels increased as compared with the 13 patients who had patent coronary arteries.These results provide some support for the idea that an increased synthesis of fibrinogen in circulation may result in a procoagulant tendency. If this is so, the HMW-Fg and FPAp content may serve as a risk index for thrombosis.


Sign in / Sign up

Export Citation Format

Share Document