Deletion of discoidin domain receptor 2 does not affect smooth muscle cell adhesion, migration, or proliferation in response to type I collagen

2012 ◽  
Vol 21 (3) ◽  
pp. 214-218 ◽  
Author(s):  
Guangpei Hou ◽  
David Wang ◽  
Michelle P. Bendeck
1999 ◽  
Vol 112 (4) ◽  
pp. 435-445 ◽  
Author(s):  
P.L. Jones ◽  
F.S. Jones ◽  
B. Zhou ◽  
M. Rabinovitch

Tenascin-C is an extracellular matrix glycoprotein, the expression of which is upregulated in remodeling arteries. In previous studies we showed that the presence of tenascin-C alters vascular smooth muscle cell shape and amplifies their proliferative response by promoting growth factor receptor clustering and phosphorylation. Moreover, we demonstrated that denatured type I collagen induces smooth muscle cell tenascin-C protein production via beta3 integrins. In the present study, we examine the pathway by which beta3 integrins stimulate expression of tenascin-C, and define a promoter sequence that is critical for its induction. On native collagen, A10 smooth muscle cells adopt a stellate morphology and produce low levels of tenascin-C mRNA and protein, whereas on denatured collagen they spread extensively and produce high levels of tenascin-C mRNA and protein, which is incorporated into an elaborate extracellular matrix. Increased tenascin-C synthesis on denatured collagen is associated with elevated protein tyrosine phosphorylation, including activation of extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). beta3 integrin function-blocking antibodies attenuate ERK1/2 activation and tenascin-C protein synthesis. Consistent with these findings, treatment with the specific MEK inhibitor, PD 98059, results in suppression of tenascin-C protein synthesis. To investigate whether beta3 integrin-dependent activation of ERK1/2 regulates the tenascin-C promoter, we transfected A10 cells with a full-length (approx. 4 kb) mouse tenascin-C gene promoter-chloramphenicol acetyltransferse reporter construct and showed that, relative to native collagen, its activity is increased on denatured collagen. Next, to identify regions of the promoter involved, we examined a series of tenascin-C promoter constructs with 5′ deletions and showed that denatured collagen-dependent promoter activity was retained by a 122-base pair element, located -43 to -165 bp upstream of the RNA start site. Activation of this element was suppressed either by blocking beta3 integrins, or by preventing ERK1/2 activation. These observations demonstrate that smooth muscle cell binding to beta3 integrins activates the mitogen activated protein kinase pathway, which is required for the induction of tenascin-C gene expression via a potential extracellular matrix response element in the tenascin-C gene promoter. Our data suggest a mechanism by which remodeling of type I collagen modulates tenascin-C gene expression via a beta3 integrin-mediated signaling pathway, and as such represents a paradigm for vascular development and disease whereby smooth muscle cells respond to perturbations in extracellular matrix composition by altering their phenotype and patterns of gene expression.


2000 ◽  
Vol 20 (4) ◽  
pp. 998-1005 ◽  
Author(s):  
Shigeru Kanda ◽  
Masafumi Kuzuya ◽  
Miguel A. Ramos ◽  
Teruhiko Koike ◽  
Kohichiro Yoshino ◽  
...  

2001 ◽  
Vol 711 ◽  
Author(s):  
Derick C. Miller ◽  
Anil Thapa ◽  
Karen M. Haberstroh ◽  
Thomas J. Webster

ABSTRACTBiomaterials that successfully integrate into surrounding tissue should match not only the tissue's mechanical properties, but also the dimensions of the associated nano-structured extra-cellular matrix (ECM) components. The goal of this research was to use these ideals to develop a synthetic, nano-structured, polymeric biomaterial that has cytocompatible and mechanical behaviors similar to that of natural vascular tissue. In a novel manner, poly-lactic acid/polyglycolic acid (PLGA) (50/50 wt.% mix) and polyurethane were separately synthesized to possess a range of fiber dimensions in the micron and nanometer regime. Preliminary results indicated that decreasing fiber diameter on both PLGA and PU enhanced arterial smooth muscle cell adhesion; specifically, arterial smooth muscle cell adhesion increased 23% when PLGA fiber dimensions decreased from 500 to 50 nm and increased 76% on nano-structured, compared to conventional structured, polyurethane. However, nano-structured PLGA decreased endothelial cell adhesion by 52%, whereas adhesion of these same cells was increased by 50% on polyurethane. For these reasons, the present in vitro study provides the first evidence that polymer fiber dimensions can be used to selectively control cell functions for vascular prosthesis.


2014 ◽  
Vol 306 (8) ◽  
pp. C753-C761 ◽  
Author(s):  
Rachel A. Cleary ◽  
Ruping Wang ◽  
Omar Waqar ◽  
Harold A. Singer ◽  
Dale D. Tang

c-Abl is a nonreceptor protein tyrosine kinase that has a role in regulating smooth muscle cell proliferation and contraction. The role of c-Abl in smooth muscle cell migration has not been investigated. In the present study, c-Abl was found in the leading edge of smooth muscle cells. Knockdown of c-Abl by RNA interference attenuated smooth muscle cell motility as evidenced by time-lapse microscopy. Furthermore, the actin-associated proteins cortactin and profilin-1 (Pfn-1) have been implicated in cell migration. In this study, cell adhesion induced cortactin phosphorylation at Tyr-421, an indication of cortactin activation. Phospho-cortactin and Pfn-1 were also found in the cell edge. Pfn-1 directly interacted with cortactin in vitro. Silencing of c-Abl attenuated adhesion-induced cortactin phosphorylation and Pfn-1 localization in the cell edge. To assess the role of cortactin/Pfn-1 coupling, we developed a cell-permeable peptide. Treatment with the peptide inhibited the interaction of cortactin with Pfn-1 without affecting cortactin phosphorylation. Moreover, treatment with the peptide impaired the recruitment of Pfn-1 to the leading edge and cell migration. Finally, β1-integrin was required for the recruitment of c-Abl to the cell edge. Inhibition of actin dynamics impaired the spatial distribution of c-Abl. These results suggest that β1-integrin may recruit c-Abl to the leading cell edge, which may regulate cortactin phosphorylation in response to cell adhesion. Phosphorylated cortactin may facilitate the recruitment of Pfn-1 to the cell edge, which promotes localized actin polymerization, leading edge formation, and cell movement. Conversely, actin dynamics may strengthen the recruitment of c-Abl to the leading edge.


Sign in / Sign up

Export Citation Format

Share Document