On the relations between critical behaviour of soil moisture spatio-temporal dynamics and catchment descriptors

CATENA ◽  
2011 ◽  
Vol 86 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Antonella Di Domenico ◽  
Giovanni Laguardia
2007 ◽  
Vol 30 (3) ◽  
pp. 543-554 ◽  
Author(s):  
Antonella Di Domenico ◽  
Giovanni Laguardia ◽  
Mauro Fiorentino

2021 ◽  
Vol 13 (9) ◽  
pp. 4926
Author(s):  
Nguyen Duc Luong ◽  
Nguyen Hoang Hiep ◽  
Thi Hieu Bui

The increasing serious droughts recently might have significant impacts on socioeconomic development in the Red River basin (RRB). This study applied the variable infiltration capacity (VIC) model to investigate spatio-temporal dynamics of soil moisture in the northeast, northwest, and Red River Delta (RRD) regions of the RRB part belongs to territory of Vietnam. The soil moisture dataset simulated for 10 years (2005–2014) was utilized to establish the soil moisture anomaly percentage index (SMAPI) for assessing intensity of agricultural drought. Soil moisture appeared to co-vary with precipitation, air temperature, evapotranspiration, and various features of land cover, topography, and soil type in three regions of the RRB. SMAPI analysis revealed that more areas in the northeast experienced severe droughts compared to those in other regions, especially in the dry season and transitional months. Meanwhile, the northwest mainly suffered from mild drought and a slightly wet condition during the dry season. Different from that, the RRD mainly had moderately to very wet conditions throughout the year. The areas of both agricultural and forested lands associated with severe drought in the dry season were larger than those in the wet season. Generally, VIC-based soil moisture approach offered a feasible solution for improving soil moisture and agricultural drought monitoring capabilities at the regional scale.


2014 ◽  
Vol 516 ◽  
pp. 76-96 ◽  
Author(s):  
H. Vereecken ◽  
J.A. Huisman ◽  
Y. Pachepsky ◽  
C. Montzka ◽  
J. van der Kruk ◽  
...  

2020 ◽  
Author(s):  
Tailin Li ◽  
Nina Noreika ◽  
Jakub Jeřábek ◽  
Josef Krasa ◽  
David Zumr ◽  
...  

<p>Many studies in recent years have focused on spatio-temporal variability of soil moisture and its value in hydrology and agriculture. The highly dynamic of soil moisture is controlled by soil properties, topography, landuse, climate conditions, and anthropogenic impacts. However, the understanding of soil moisture dynamics is limited by measurement restrictions. The aim of this study is to analyse spatio-temporal patterns of soil moisture using various soil moisture monitoring techniques and numerical modelling approaches that have been developed for application at differing scales at the Nucice experimental catchment (0.53 km<sup>2</sup>), which is located just outside of Prague, the Czech Republic.</p><p>The experimental catchment is dominated by agricultural activities. To identify spatio-temporal patterns in the catchment, we have implemented shallow soil moisture measurements at point-scale, hillslope-scale, and catchment-scale. We have deployed FDR (frequency domain reflectometry) sensors at different depths for point-scale measurements. The monitoring of hillslope-scale and catchment-scale have been mostly accomplished by field surveys with HydroSense II sensors. Subsequently, we have applied geostatistical analyses (Kriging and inverse distance weighting interpolation) for the measured soil moisture data to discover spatial patterns in soil moisture across the catchment. Besides, numerical models Hydrus (1D and 2D), MIKE-SHE, and SWAT have been set up at this study site. These models have been calibrated with event-based data and soil moisture measurements, which present a better image of the hydrological processes and spatio-temporal dynamics of soil moisture at various scales. The modelling outcomes have not only fit agreeably with the observed discharge and the temporal dynamics of soil moisture but have also identified wet zones along hillslopes.</p><p>Further research will intensify the soil moisture monitoring at the catchment-scale by using remote sensing and Comsic-ray soil moisture probes. Also, anthropogenic impacts (e.g. influence of wheel track) should be considered in the modelling approach. Ultimately, we should be able to understand and predict the spatio-temporal dynamics of soil moisture in small scale agricultural catchments under different climate conditions.</p><p>This research has been supported by project H2020 No. 773903 SHui, focused on water scarcity in European and Chinese cropping systems.</p>


2021 ◽  
Vol 69 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Vesna Đukić ◽  
Ranka Erić ◽  
Miroslav Dumbrovsky ◽  
Veronika Sobotkova

Abstract The knowledge of spatio-temporal dynamics of soil moisture within the catchment is very important for rainfall–runoff modelling in flood forecasting. In this study the comparison between remotely sensed soil moisture and soil moisture estimated from the SHETRAN hydrological model was performed for small and flashy Jičinka River catchment (75.9 km2) in the Czech Republic. Due to a relatively coarse spatial resolution of satellite data, the satellite soil moisture data were downscaled, by applying the method developed by Qu et al. (2015). The sub-grid variability of soil moisture was estimated on the basis of the mean soil moisture for the grid cell and the known hydraulic soil properties. The SHETRAN model was calibrated and verified to the observed streamflow hydrographs at the catchment outlet. The good correlation between the two different soil moisture information was obtained according to the majority of applied criteria. The results of the evaluation criteria indicate that the downscaled remotely sensed soil moisture data can be used as additional criteria for the calibration and validation of hydrological models for small catchments and can contribute to a better estimation of parameters, to reduce uncertainties of hydrological models and improve runoff simulations.


Sign in / Sign up

Export Citation Format

Share Document