Spatio-temporal dynamics of soil moisture in tallgrass prairie using ERS-1 SAR image time series: first year results

Author(s):  
G.M. Henebry ◽  
A.K. Knapp
2021 ◽  
Vol 13 (9) ◽  
pp. 4926
Author(s):  
Nguyen Duc Luong ◽  
Nguyen Hoang Hiep ◽  
Thi Hieu Bui

The increasing serious droughts recently might have significant impacts on socioeconomic development in the Red River basin (RRB). This study applied the variable infiltration capacity (VIC) model to investigate spatio-temporal dynamics of soil moisture in the northeast, northwest, and Red River Delta (RRD) regions of the RRB part belongs to territory of Vietnam. The soil moisture dataset simulated for 10 years (2005–2014) was utilized to establish the soil moisture anomaly percentage index (SMAPI) for assessing intensity of agricultural drought. Soil moisture appeared to co-vary with precipitation, air temperature, evapotranspiration, and various features of land cover, topography, and soil type in three regions of the RRB. SMAPI analysis revealed that more areas in the northeast experienced severe droughts compared to those in other regions, especially in the dry season and transitional months. Meanwhile, the northwest mainly suffered from mild drought and a slightly wet condition during the dry season. Different from that, the RRD mainly had moderately to very wet conditions throughout the year. The areas of both agricultural and forested lands associated with severe drought in the dry season were larger than those in the wet season. Generally, VIC-based soil moisture approach offered a feasible solution for improving soil moisture and agricultural drought monitoring capabilities at the regional scale.


2021 ◽  
Vol 25 (2) ◽  
pp. 957-982 ◽  
Author(s):  
Petra Hulsman ◽  
Hubert H. G. Savenije ◽  
Markus Hrachowitz

Abstract. Satellite observations can provide valuable information for a better understanding of hydrological processes and thus serve as valuable tools for model structure development and improvement. While model calibration and evaluation have in recent years started to make increasing use of spatial, mostly remotely sensed information, model structural development largely remains to rely on discharge observations at basin outlets only. Due to the ill-posed inverse nature and the related equifinality issues in the modelling process, this frequently results in poor representations of the spatio-temporal heterogeneity of system-internal processes, in particular for large river basins. The objective of this study is thus to explore the value of remotely sensed, gridded data to improve our understanding of the processes underlying this heterogeneity and, as a consequence, their quantitative representation in models through a stepwise adaptation of model structures and parameters. For this purpose, a distributed, process-based hydrological model was developed for the study region, the poorly gauged Luangwa River basin. As a first step, this benchmark model was calibrated to discharge data only and, in a post-calibration evaluation procedure, tested for its ability to simultaneously reproduce (1) the basin-average temporal dynamics of remotely sensed evaporation and total water storage anomalies and (2) their temporally averaged spatial patterns. This allowed for the diagnosis of model structural deficiencies in reproducing these temporal dynamics and spatial patterns. Subsequently, the model structure was adapted in a stepwise procedure, testing five additional alternative process hypotheses that could potentially better describe the observed dynamics and pattern. These included, on the one hand, the addition and testing of alternative formulations of groundwater upwelling into wetlands as a function of the water storage and, on the other hand, alternative spatial discretizations of the groundwater reservoir. Similar to the benchmark, each alternative model hypothesis was, in a next step, calibrated to discharge only and tested against its ability to reproduce the observed spatio-temporal pattern in evaporation and water storage anomalies. In a final step, all models were re-calibrated to discharge, evaporation and water storage anomalies simultaneously. The results indicated that (1) the benchmark model (Model A) could reproduce the time series of observed discharge, basin-average evaporation and total water storage reasonably well. In contrast, it poorly represented time series of evaporation in wetland-dominated areas as well as the spatial pattern of evaporation and total water storage. (2) Stepwise adjustment of the model structure (Models B–F) suggested that Model F, allowing for upwelling groundwater from a distributed representation of the groundwater reservoir and (3) simultaneously calibrating the model with respect to multiple variables, i.e. discharge, evaporation and total water storage anomalies, provided the best representation of all these variables with respect to their temporal dynamics and spatial patterns, except for the basin-average temporal dynamics in the total water storage anomalies. It was shown that satellite-based evaporation and total water storage anomaly data are not only valuable for multi-criteria calibration, but can also play an important role in improving our understanding of hydrological processes through the diagnosis of model deficiencies and stepwise model structural improvement.


2019 ◽  
Vol 30 (3) ◽  
pp. 713-735 ◽  
Author(s):  
Jonas Isensee ◽  
George Datseris ◽  
Ulrich Parlitz

Abstract We present a method for both cross-estimation and iterated time series prediction of spatio-temporal dynamics based on local modelling and dimension reduction techniques. Assuming homogeneity of the underlying dynamics, we construct delay coordinates of local states and then further reduce their dimensionality through Principle Component Analysis. The prediction uses nearest neighbour methods in the space of dimension reduced states to either cross-estimate or iteratively predict the future of a given frame. The effectiveness of this approach is shown for (noisy) data from a (cubic) Barkley model, the Bueno-Orovio–Cherry–Fenton model, and the Kuramoto–Sivashinsky model.


2013 ◽  
Vol 7 (4) ◽  
pp. e2145 ◽  
Author(s):  
Jean Gaudart ◽  
Stanislas Rebaudet ◽  
Robert Barrais ◽  
Jacques Boncy ◽  
Benoit Faucher ◽  
...  

2018 ◽  
Vol 11 (1) ◽  
pp. 37 ◽  
Author(s):  
Julien Denize ◽  
Laurence Hubert-Moy ◽  
Julie Betbeder ◽  
Samuel Corgne ◽  
Jacques Baudry ◽  
...  

Monitoring vegetation cover during winter is a major environmental and scientific issue in agricultural areas. From an environmental viewpoint, the presence and type of vegetation cover in winter influences the transport of pollutants to water resources. From a methodological viewpoint, characterizing spatio-temporal dynamics of land cover and land use at the field scale is challenging due to the diversity of farming strategies and practices in winter. The objective of this study was to evaluate the respective advantages of Sentinel optical and SAR time-series to identify land use in winter. To this end, Sentinel-1 and -2 time-series were classified using Support Vector Machine and Random Forest algorithms in a 130 km² agricultural area. From the classification, the Sentinel-2 time-series identified winter land use more accurately (overall accuracy (OA) = 75%, Kappa index = 0.70) than that of Sentinel-1 (OA = 70%, Kappa = 0.66) but a combination of the Sentinel-1 and -2 time-series was the most accurate (OA = 81%, Kappa = 0.77). Our study outlines the effectiveness of Sentinel-1 and -2 for identify land use in winter, which can help to change agricultural practices.


Sign in / Sign up

Export Citation Format

Share Document