Risk assessment of metal species in sediments of the river Ganga

CATENA ◽  
2014 ◽  
Vol 122 ◽  
pp. 140-149 ◽  
Author(s):  
Mayank Pandey ◽  
Smriti Tripathi ◽  
Ashutosh Kumar Pandey ◽  
B.D. Tripathi
2021 ◽  
Author(s):  
Fangfang Miao ◽  
Yimei Zhang ◽  
Yu Li ◽  
Qianguo Lin

Abstract Soil heavy metal pollution had become a global issue involving environmental safety and human health risks. A methodology was explored to quantify the sources of heavy metals in the soils and investigate the spatial distributions of heavy metals by the gridded spatial scale. The case study was implemented in the industrial waste sites in Suzhou city, Jiangsu province. Zinc (Zn) was screened out as the targeted metal (TM) through the potential ecological risk assessment, the species of which was simulated by the geochemical software PHREEQC. The aim of this research was to determine the dominant metal species of TM with potential hazardous health risk to local people to achieve key prevention and pollution control. Herein, according to the morphological evolution of metal species, the activity and concentration of the Zn species was calculated for both carcinogenic and non-carcinogenic health risk assessment. The evaluation of the optimized human health risk demonstrated that the associated health risk of Zn (II) depended predominantly on its metal speciation and was also affected by acidity and soil organic matter. Overall, the optimized carcinogenic and non-carcinogenic risk value of Zn2S32− for adults was 2.01E-04 and for children was 1.31 respectively, resulting in corresponding hazardous risk to human, which accounted for high risk level of 61.5% and 58.5%, respectively. This method could provide a reference for the decision-making of soil heavy metal pollution control and targeted hypotoxic convertion of metal species and remediation for certain heavy metal of polluted area.


2019 ◽  
Vol 249 ◽  
pp. 1071-1080 ◽  
Author(s):  
Paromita Chakraborty ◽  
Moitraiyee Mukhopadhyay ◽  
Srimurali Sampath ◽  
Babu Rajendran Ramaswamy ◽  
Athanasios Katsoyiannis ◽  
...  

1998 ◽  
Vol 55 (10) ◽  
pp. 2221-2243 ◽  
Author(s):  
Peter M Chapman ◽  
Feiyue Wang ◽  
Colin Janssen ◽  
Guido Persoone ◽  
Herbert E Allen

Major metal-binding phases in the aerobic layer of sediments are iron and manganese oxyhydroxides (FeOOH and MnOOH) and particulate organic carbon (POC). The acid-volatile sulfide (AVS) model proposed for predicting nontoxicity from metals-contaminated sediments is only applicable to anaerobic sediments. In other sediments, normalization by POC or FeOOH and MnOOH may be predictive, but binding constants are not well understood. Metal mobilization is enhanced by ligand complexation and oxidation of anaerobic sediments. Free metal ion is the most bioavailable species, but other labile metal species and nonchemical variables also determine metal bioavailability; biotic site binding models have shown promise predicting toxicity for systems of differing chemistry. Hazard identification and ecological risk assessment (ERA) depend on determining bioavailability, from water (overlying, interstitial) and food, which can be done prospectively (e.g., normalized sediment chemistry, laboratory bioassays) or retrospectively (e.g., in situ bioassays, field studies). ERA of sediment-bound metals requires primary emphasis on toxicity and consideration of the three separate transformation processes for metals in the aquatic environment, the differences between essential and nonessential metals, the complex interactions that control bioavailability, adaptation, which may occur relatively simply without appreciable cost to the organism, weight of evidence, and causality.


Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


Sign in / Sign up

Export Citation Format

Share Document