Geological basement control on 222Rn accumulation as an input function for hydrogeological systems on a loess aquifer, Argentina

CATENA ◽  
2020 ◽  
Vol 194 ◽  
pp. 104692
Author(s):  
Mélanie Vital ◽  
Daniel E. Martínez ◽  
Sebastián I. Grondona ◽  
Mauricio O. Quiroz-Londoño ◽  
Flavia Donna ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mercy I. Akerele ◽  
Sara A. Zein ◽  
Sneha Pandya ◽  
Anastasia Nikolopoulou ◽  
Susan A. Gauthier ◽  
...  

Abstract Introduction Quantitative positron emission tomography (PET) studies of neurodegenerative diseases typically require the measurement of arterial input functions (AIF), an invasive and risky procedure. This study aims to assess the reproducibility of [11C]DPA-713 PET kinetic analysis using population-based input function (PBIF). The final goal is to possibly eliminate the need for AIF. Materials and methods Eighteen subjects including six healthy volunteers (HV) and twelve Parkinson disease (PD) subjects from two [11C]-DPA-713 PET studies were included. Each subject underwent 90 min of dynamic PET imaging. Five healthy volunteers underwent a test-retest scan within the same day to assess the repeatability of the kinetic parameters. Kinetic modeling was carried out using the Logan total volume of distribution (VT) model. For each data set, kinetic analysis was performed using a patient-specific AIF (PSAIF, ground-truth standard) and then repeated using the PBIF. PBIF was generated using the leave-one-out method for each subject from the remaining 17 subjects and after normalizing the PSAIFs by 3 techniques: (a) Weightsubject×DoseInjected, (b) area under AIF curve (AUC), and (c) Weightsubject×AUC. The variability in the VT measured with PSAIF, in the test-retest study, was determined for selected brain regions (white matter, cerebellum, thalamus, caudate, putamen, pallidum, brainstem, hippocampus, and amygdala) using the Bland-Altman analysis and for each of the 3 normalization techniques. Similarly, for all subjects, the variabilities due to the use of PBIF were assessed. Results Bland-Altman analysis showed systematic bias between test and retest studies. The corresponding mean bias and 95% limits of agreement (LOA) for the studied brain regions were 30% and ± 70%. Comparing PBIF- and PSAIF-based VT estimate for all subjects and all brain regions, a significant difference between the results generated by the three normalization techniques existed for all brain structures except for the brainstem (P-value = 0.095). The mean % difference and 95% LOA is −10% and ±45% for Weightsubject×DoseInjected; +8% and ±50% for AUC; and +2% and ± 38% for Weightsubject×AUC. In all cases, normalizing by Weightsubject×AUC yielded the smallest % bias and variability (% bias = ±2%; LOA = ±38% for all brain regions). Estimating the reproducibility of PBIF-kinetics to PSAIF based on disease groups (HV/PD) and genotype (MAB/HAB), the average VT values for all regions obtained from PBIF is insignificantly higher than PSAIF (%difference = 4.53%, P-value = 0.73 for HAB; and %difference = 0.73%, P-value = 0.96 for MAB). PBIF also tends to overestimate the difference between PD and HV for HAB (% difference = 32.33% versus 13.28%) and underestimate it in MAB (%difference = 6.84% versus 20.92%). Conclusions PSAIF kinetic results are reproducible with PBIF, with variability in VT within that obtained for the test-retest studies. Therefore, VT assessed using PBIF-based kinetic modeling is clinically feasible and can be an alternative to PSAIF.


2021 ◽  
pp. 0271678X2098239
Author(s):  
Adam E Goldman-Yassen ◽  
Matus Straka ◽  
Michael Uhouse ◽  
Seena Dehkharghani

The generalization of perfusion-based, anterior circulation large vessel occlusion selection criteria to posterior circulation stroke is not straightforward due to physiologic delay, which we posit produces physiologic prolongation of the posterior circulation perfusion time-to-maximum (Tmax). To assess normative Tmax distributions, patients undergoing CTA/CTP for suspected ischemic stroke between 1/2018-3/2019 were retrospectively identified. Subjects with any cerebrovascular stenoses, or with follow-up MRI or final clinical diagnosis of stroke were excluded. Posterior circulation anatomic variations were identified. CTP were processed in RAPID and segmented in a custom pipeline permitting manually-enforced arterial input function (AIF) and perfusion estimations constrained to pre-specified vascular territories. Seventy-one subjects (mean 64 ± 19 years) met inclusion. Median Tmax was significantly greater in the cerebellar hemispheres (right: 3.0 s, left: 2.9 s) and PCA territories (right: 2.9 s; left: 3.3 s) than in the anterior circulation (right: 2.4 s; left: 2.3 s, p < 0.001). Fetal PCA disposition eliminated ipsilateral PCA Tmax delays (p = 0.012). Median territorial Tmax was significantly lower with basilar versus any anterior circulation AIF for all vascular territories (p < 0.001). Significant baseline delays in posterior circulation Tmax are observed even without steno-occlusive disease and vary with anatomic variation and AIF selection. The potential for overestimation of at-risk volumes in the posterior circulation merits caution in future trials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric Salmon ◽  
Mohamed Ali Bahri ◽  
Alain Plenevaux ◽  
Guillaume Becker ◽  
Alain Seret ◽  
...  

AbstractThe purpose of this exploratory research is to provide data on synaptopathy in the behavioral variant of frontotemporal dementia (bvFTD). Twelve patients with probable bvFTD were compared to 12 control participants and 12 patients with Alzheimer’s disease (AD). Loss of synaptic projections was assessed with [18F]UCBH-PET. Total distribution volume was obtained with Logan method using carotid artery derived input function. Neuroimages were analyzed with SPM12. Verbal fluency, episodic memory and awareness of cognitive impairment were equally impaired in patients groups. Compared to controls, [18F]UCBH uptake tended to decrease in the right anterior parahippocampal gyrus of bvFTD patients. Loss of synaptic projections was observed in the right hippocampus of AD participants, but there was no significant difference in [18F]UCBH brain uptake between patients groups. Anosognosia for clinical disorder was correlated with synaptic density in the caudate nucleus and the anteromedial prefrontal cortex. This study suggests that synaptopathy in bvFTD targets the temporal social brain and self-referential processes.


2016 ◽  
Vol 12 ◽  
pp. P1097-P1098
Author(s):  
Julie Ottoy ◽  
Jeroen Verhaeghe ◽  
Ellis Niemantsverdriet ◽  
Leonie Wyffels ◽  
Charisse Somers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document