Long-term vegetation restoration promotes the stability of the soil micro-food web in the Loess Plateau in North-west China

CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105293
Author(s):  
Yang Wu ◽  
WenJing Chen ◽  
Wulan Entemake ◽  
Jie Wang ◽  
HongFei Liu ◽  
...  
2016 ◽  
Vol 6 (4) ◽  
pp. 116
Author(s):  
Xiongwen Chen ◽  
Jianzhi Niu

The Loess Plateau is a severely eroded and very venerable area in the northwestern China. Large scale vegetation restoration has been conducted in this region during the recent decades, its effect on the regional ecohydrology is under concern. In this study, long term satellite and derived data were used to analyze regional hydrological condition at the major part of the Loess Plateau (35°-37°N and 105°-110° E). The results indicate that there was an increase in the regional normalized difference vegetation index, evapotranspiration, rainfall intensity, soil water storage (surface 1m layer) and runoff. It was also observed that the total annual precipitation did not change significantly.The possible mechanisms may be related to the complicated processes of vegetation on ecohydrology. Our results and approach may be useful to evaluate the benefits of ecological restoration and further vegetation restoration at the Loess Plateau and other regions.


2021 ◽  
Vol 13 (12) ◽  
pp. 2358
Author(s):  
Linjing Qiu ◽  
Yiping Wu ◽  
Zhaoyang Shi ◽  
Yuting Chen ◽  
Fubo Zhao

Quantitatively identifying the influences of vegetation restoration (VR) on water resources is crucial to ecological planning. Although vegetation coverage has improved on the Loess Plateau (LP) of China since the implementation of VR policy, the way vegetation dynamics influences regional evapotranspiration (ET) remains controversial. In this study, we first investigate long-term spatiotemporal trends of total ET (TET) components, including ground evaporation (GE) and canopy ET (CET, sum of canopy interception and canopy transpiration) based on the GLEAM-ET dataset. The ET changes are attributed to VR on the LP from 2000 to 2015 and these results are quantitatively evaluated here using the Community Land Model (CLM). Finally, the relative contributions of VR and climate change to ET are identified by combining climate scenarios and VR scenarios. The results show that the positive effect of VR on CET is offset by the negative effect of VR on GE, which results in a weak variation in TET at an annual scale and an increased TET is only shown in summer. Regardless of the representative concentration pathway (RCP4.5 or RCP8.5), differences resulted from the responses of TET to different vegetation conditions ranging from −3.7 to −1.2 mm, while climate change from RCP4.5 to RCP8.5 caused an increase in TET ranging from 0.1 to 65.3 mm. These findings imply that climate change might play a dominant role in ET variability on the LP, and this work emphasizes the importance of comprehensively considering the interactions among climate factors to assess the relative contributions of VR and climate change to ET.


Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


IFLA Journal ◽  
2021 ◽  
pp. 034003522110237
Author(s):  
Paulina Kralka ◽  
Marya Muzart

The British Library’s Stein collection contains about 14,000 scrolls, fragments and booklets in Chinese from a cave in the Buddhist Mogao Caves complex near Dunhuang in north-west China. This article describes storage and access solutions for the collection in the context of a busy research library and the currently ongoing Lotus Sutra Manuscripts Digitisation project. The article presents the various technical and organisational challenges that its rehousing presents to the library conservators. Restricted by the existing storage facilities, budget limitations and tight project deadlines, the conservators must provide housing that is adequate for the scroll format, is practical and prevents dissociation, but is also cost- and time-effective. With the best storage practice in mind, they have developed original solutions, balancing the specific housing requirements and constraints. These storage solutions allow the conservators to ensure the long-term safety and accessibility of the collection while laying down a foundation of standardisation that will ensure a homogeneity of approaches for future projects.


Sign in / Sign up

Export Citation Format

Share Document