Correlation between ΔAbs, ΔRGB (red) and stearic acid destruction rates using commercial self-cleaning glass as the photocatalyst

2014 ◽  
Vol 230 ◽  
pp. 245-249 ◽  
Author(s):  
Andrew Mills ◽  
Nathan Wells ◽  
Christopher O’Rourke
Keyword(s):  
2020 ◽  
Vol 2 (1) ◽  
pp. 12
Author(s):  
Diana Vanda Wellia ◽  
Febby Alvionita ◽  
Syukri Arief

The surface of ultrahydrophobic glass has been successfully prepared using the combination of TiO2 and stearic acid. TiO2 was used to increase the surface roughness, while stearing acid was a surface modifier. The peroxo sol-gel method has been used to synthesize TiO2 precursors on the glass layer followed by modification of stearic acid. The maximal water contact angle of 141o has been obtained for the composition of 0.4 grams of stearic acid and 20 mL of ethanol (NKTS-2%). AFM analysis showed the roughness of NKTS-2% is 4,15 nm, which was greater than the pure glass. FTIR analysis also showed vibration of C=O (carbonyl) at 1697cm-1 indicating the chemical interaction between TiO2 and stearic acid. EDX spectrum analysis of TiO2/stearic acid (TiO2/C18H36O2) showed the existence of titanium, oxygen, and carbon. The optimum sample (NKTS-2%) showed a good transparency and self-cleaning properties compared to pure glass


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1058
Author(s):  
Ibrahim Dundar ◽  
Arvo Mere ◽  
Valdek Mikli ◽  
Malle Krunks ◽  
Ilona Oja Acik

In this study, TiO2 thin films were deposited by ultrasonic spray pyrolysis from solutions with concentrations of 0.1 and 0.2 M. The deposition temperature was adjusted at 350 °C and all samples were annealed at 500 °C for 1 h in air. The thickness of TiO2 films was changed in the range of 50 to ca. 800 nm by varying the number of spray cycles from 1 to 21 and the solution concentration. The results showed that the mean crystallite size of the anatase structure, the surface roughness, and light absorption increased with the film thickness. The effect of film thickness on the photocatalytic activity was investigated with the photodegradation of stearic acid under UV-A irradiation. The optimal thickness of TiO2 films fabricated by ultrasonic spray pyrolysis for photocatalytic self-cleaning applications was in the range of 170–230 nm, indicating a ca. 2.6 times-higher photocatalytic self-cleaning activity compared to the reference sample, Pilkington ActivTM. The photocatalytic results showed that the 190 nm-thick TiO2 film deposited from the 0.1 M solution applying seven spray cycles exhibited the finest grain structure and maximum photocatalytic activity, leading to 94% of stearic acid degradation in 180 min under UV-A light with the reaction rate constant k = 0.01648 min−1.


2008 ◽  
Vol 197 (2-3) ◽  
pp. 170-176 ◽  
Author(s):  
L. Peruchon ◽  
E. Puzenat ◽  
A. Girard-Egrot ◽  
L. Blum ◽  
J.M. Herrmann ◽  
...  

1995 ◽  
Vol 10 (11) ◽  
pp. 2842-2848 ◽  
Author(s):  
Y. Paz ◽  
Z. Luo ◽  
L. Rabenberg ◽  
A. Heller

In the context of studying the feasibility of photocatalytically self-cleaning windows and windshields, clear, abrasion resistant, photocatalytic films of TiO2 were formed on soda lime glass and on fused quartz by a sol-gel process. The rate of photooxidation of contaminant deposits was estimated by measuring the rate of decrease in the integrated IR absorbance associated with the C-H stretching vibrations of a thin solution-cast film of stearic acid under 365 nm (2.4 mW/cm2) or 254 nm (0.8 mW/cm2) irradiation. Approximately 3 × 10−4 stearic acid molecules were stripped per 365 nm photon in either front- or back-illuminated soda lime glass, and 6 × 10−4 molecules when the films were coated on fused quartz. For thin TiO2 films on fused quartz, the rate of photooxidation, normalized by the number of photons absorbed per unit area, was independent of the wavelength. In contrast, for films on soda lime glass, the rate of photooxidation, when similarly normalized, was higher for the less penetrating wavelength. The reduced photoactivity on glass at the deeply penetrating wavelength (365 nm), as well as the greater photoefficiency on quartz than on glass, are attributed to diffusion of sodium oxide from the glass into the inner glass-contacting zone of the TiO2 layer.


2018 ◽  
Vol 4 (4) ◽  
pp. 52-63
Author(s):  
V. Yu. Shumskaya ◽  
S. F. Zhandarov ◽  
L. A. Kalinin ◽  
L. F. Ivanov ◽  
V. V. Snezhkov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document