Selective cyclohexane oxidation catalyzed by manganese porphyrins and co-catalysts

2016 ◽  
Vol 264 ◽  
pp. 185-190 ◽  
Author(s):  
Tao Wang ◽  
Yuanbin She ◽  
Haiyan Fu ◽  
Hui Li
Polyhedron ◽  
2020 ◽  
Vol 187 ◽  
pp. 114627
Author(s):  
Alexandre Moreira Meireles ◽  
Dayse Carvalho da Silva Martins

Polyhedron ◽  
2019 ◽  
Vol 163 ◽  
pp. 144-152 ◽  
Author(s):  
Adriano Silva Guimarães ◽  
Bernardo Schmitberger ◽  
Alexandre Moreira Meireles ◽  
Dayse Carvalho da Silva Martins ◽  
Gilson DeFreitas-Silva

2015 ◽  
Vol 491 ◽  
pp. 17-27 ◽  
Author(s):  
Vinicius Santos da Silva ◽  
Alexandre Moreira Meireles ◽  
Dayse Carvalho da Silva Martins ◽  
Júlio Santos Rebouças ◽  
Gilson DeFreitas-Silva ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 1563-1574 ◽  
Author(s):  
Mariana Goes de Araujo Tôrres ◽  
Vinicius Santos da Silva ◽  
Ynara Marina Idemori ◽  
Gilson DeFreitas-Silva

1997 ◽  
Vol 90 (3) ◽  
pp. 407-413
Author(s):  
MARC KELEMEN ◽  
CHRISTOPH WACHTER ◽  
HUBERT WINTER ◽  
ELMAR DORMANN ◽  
RUDOLF GOMPPER ◽  
...  

2019 ◽  
Author(s):  
Ke-Yin Ye ◽  
Terry McCallum ◽  
Song Lin

Organic radicals are generally short-lived intermediates with exceptionally high reactivity. Strategically, achieving synthetically useful transformations mediated by organic radicals requires both efficient initiation and selective termination events. Here, we report a new catalytic strategy, namely bimetallic radical redox-relay, in the regio- and stereoselective rearrangement of epoxides to allylic alcohols. This approach exploits the rich redox chemistry of Ti and Co complexes and merges reductive epoxide ring opening (initiation) with hydrogen atom transfer (termination). Critically, upon effecting key bond-forming and -breaking events, Ti and Co catalysts undergo proton-transfer/electron-transfer with one another to achieve turnover, thus constituting a truly synergistic dual catalytic system.<br>


2020 ◽  
Vol 01 ◽  
Author(s):  
Bonamali Pal ◽  
Anila Monga ◽  
Aadil Bathla

Background:: Bimetallic nanocomposites have currently gained significant importance for enhanced catalytic applications relative to monometallic analogues. The synergistic interactions modified electronic and optical properties in the bimetallic (M1@M2) structural morphology e.g., core-shell /alloy nanostructures resulted in a better co-catalytic performance for TiO2 photocatalysis. Objective:: Hence, this article discusses the preparation, characterization, and co-catalytic activity of different bimetallic nanostructures namely, Cu@Zn, Pd@Au, Au@Ag, and Ag@Cu, etc. Method:: These bimetallic co-catalysts deposited on TiO2 possess the ability to absorb visible light due to surface plasmonic absorption and are also expected to display the new properties due to synergy between two distinct metals. As a result, they reveal the highest level of activity than the monometal deposited TiO2. Result:: Their optical absorption, emission, charge carrier dynamics, and surface structural morphology are explained for the improved photocatalytic activity of M1@M2 loaded TiO2 for the hydrogenation of certain organic compounds e.g., quinoline, crotonaldehyde, and 1,3-dinitrobenzene, etc. under UV/ visible light irradiation. Conclusion:: It revealed that the use of bimetallic core@shell co-catalyst for hydrogenation of important industrial organics by M1@M2-TiO2 nanocomposite demonstrates beneficial reactivity in many instances relative to conventional transition metal catalysts.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ana Bjelić ◽  
Brigita Hočevar ◽  
Miha Grilc ◽  
Uroš Novak ◽  
Blaž Likozar

AbstractConventional biorefinery processes are complex, engineered and energy-intensive, where biomass fractionation, a key functional step for the production of biomass-derived chemical substances, demands industrial organic solvents and harsh, environmentally harmful reaction conditions. There is a timely, clear and unmet economic need for a systematic, robust and affordable conversion method technology to become greener, sustainable and cost-effective. In this perspective, deep eutectic solvents (DESs) have been envisaged as the most advanced novel polar liquids that are entirely made of natural, molecular compounds that are capable of an association via hydrogen bonding interactions. DES has quickly emerged in various application functions thanks to a formulations’ simple preparation. These molecules themselves are biobased, renewable, biodegradable and eco-friendly. The present experimental review is providing the state of the art topical overview of trends regarding the employment of DESs in investigated biorefinery-related techniques. This review covers DESs for lignocellulosic component isolation, applications as (co)catalysts and their functionality range in biocatalysis. Furthermore, a special section of the DESs recyclability is included. For DESs to unlock numerous new (reactive) possibilities in future biorefineries, the critical estimation of its complexity in the reaction, separation, or fractionation medium should be addressed more in future studies.


Sign in / Sign up

Export Citation Format

Share Document