scholarly journals Transcriptomic analysis of differentially expressed genes in the molting gland (Y-organ) of the blackback land crab, Gecarcinus lateralis, during molt-cycle stage transitions

Author(s):  
Sunetra Das ◽  
Lindsay Vraspir ◽  
Wen Zhou ◽  
David S. Durica ◽  
Donald L. Mykles
2008 ◽  
Vol 36 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Pascal J. H. Smeets ◽  
Heleen M. de Vogel-van den Bosch ◽  
Peter H. M. Willemsen ◽  
Alphons P. Stassen ◽  
Torik Ayoubi ◽  
...  

Peroxisome proliferator-activated receptor (PPAR)α regulates lipid metabolism at the transcriptional level and modulates the expression of genes involved in inflammation, cell proliferation, and differentiation. Although PPARα has been shown to mitigate cardiac hypertrophy, knowledge about underlying mechanisms and the nature of signaling pathways involved is fragmentary and incomplete. The aim of this study was to identify the processes and signaling pathways regulated by PPARα in hearts challenged by a chronic pressure overload by means of whole genome transcriptomic analysis. PPARα−/− and wild-type mice were subjected to transverse aortic constriction (TAC) for 28 days, and left ventricular gene expression profile was determined with Affymetrix GeneChip Mouse Genome 430 2.0 arrays containing >45,000 probe sets. In unchallenged hearts, the mere lack of PPARα resulted in 821 differentially expressed genes, many of which are related to lipid metabolism and immune response. TAC resulted in a more pronounced cardiac hypertrophy and more extensive changes in gene expression (1,910 and 312 differentially expressed genes, respectively) in PPARα−/− mice than in wild-type mice. Many of the hypertrophy-related genes were related to development, signal transduction, actin filament organization, and collagen synthesis. Compared with wild-type hypertrophied hearts, PPARα−/− hypertrophied hearts revealed enrichment of gene clusters related to extracellular matrix remodeling, immune response, oxidative stress, and inflammatory signaling pathways. The present study therefore demonstrates that, in addition to lipid metabolism, PPARα is an important modulator of immune and inflammatory response in cardiac muscle.


Sign in / Sign up

Export Citation Format

Share Document