scholarly journals The FXR agonist 6ECDCA reduces hepatic steatosis and oxidative stress induced by ethanol and low-protein diet in mice

2014 ◽  
Vol 217 ◽  
pp. 19-27 ◽  
Author(s):  
F.A.R. Lívero ◽  
Aline Maria Stolf ◽  
Arturo Alejandro Dreifuss ◽  
Amanda Leite Bastos-Pereira ◽  
Raphaella Chicorski ◽  
...  
2014 ◽  
Vol 39 (8) ◽  
pp. 880-887 ◽  
Author(s):  
Luciana Nascimento ◽  
Cristiane M. Freitas ◽  
Reginaldo Silva-Filho ◽  
Ana Catarina R. Leite ◽  
Alessandra B. Silva ◽  
...  

Protein restriction during perinatal and early postnatal development is associated with a greater incidence of disease in the adult, such arterial hypertension. The aim in the present study was to investigate the effect of maternal low-protein diet on mitochondrial oxidative phosphorylation capacity, mitochondrial reactive oxygen species (ROS) formation, antioxidant levels (enzymatic and nonenzymatic), and oxidative stress levels on the heart of the adult offspring. Pregnant Wistar rats received either 17% casein (normal protein, NP) or 8% casein (low protein, LP) throughout pregnancy and lactation. After weaning male progeny of these NP or LP fed rats, females were maintained on commercial chow (Labina-Purina). At 100 days post-birth, the male rats were sacrificed and heart tissue was harvested and stored at −80 °C. Our results show that restricting protein consumption in pregnant females induced decreased mitochondrial oxidative phosphorylation capacity (51% reduction in ADP-stimulated oxygen consumption and 49.5% reduction in respiratory control ratio) in their progeny when compared with NP group. In addition, maternal low-protein diet induced a significant decrease in enzymatic antioxidant capacity (37.8% decrease in superoxide dismutase activity; 42% decrease in catalase activity; 44.8% decrease in glutathione-S-transferase activity; 47.9% decrease in glutathione reductase; 25.7% decrease in glucose-6 phosphate dehydrogenase) and glutathione level (34.8% decrease) when compared with control. From these findings, we hypothesize that an increased production of ROS and decrease in antioxidant activity levels induced by protein restriction during development could potentiate the progression of metabolic and cardiac diseases in adulthood.


2009 ◽  
Vol 103 (4) ◽  
pp. 608-616 ◽  
Author(s):  
Xiang Gao ◽  
Jianxiang Wu ◽  
Zheyi Dong ◽  
Can Hua ◽  
Huimin Hu ◽  
...  

Dietary protein restriction is one major therapy in chronic kidney disease (CKD), and ketoacids have been evaluated in CKD patients during restricted-protein diets. The objective of the present study was to compare the efficacy of a low-protein diet supplemented with ketoacids (LPD+KA) and a low-protein diet alone (LPD) in halting the development of renal lesions in CKD. 5/6 Nephrectomy Sprague–Dawley rats were randomly divided into three groups, and fed with either 22 % protein (normal-protein diet; NPD), 6 % protein (LPD) or 5 % protein plus 1 % ketoacids (LPD+KA) for 24 weeks. Sham-operated rats were used as controls. Each 5/6 nephrectomy group included fifteen rats and the control group included twelve rats. Proteinuria, decreased renal function, glomerular sclerosis and tubulointerstitial fibrosis were found in the remnant kidneys of the NPD group. Protein restriction ameliorated these changes, and the effect was more obvious in the LPD+KA group after 5/6 nephrectomy. Lower body weight and serum albumin levels were found in the LPD group, indicating protein malnutrition. Lipid and protein oxidative products were significantly increased in the LPD group compared with the LPD+KA group. These findings indicate that a LPD supplemented with ketoacids is more effective than a LPD alone in protecting the function of remnant kidneys from progressive injury, which may be mediated by ketoacids ameliorating protein malnutrition and oxidative stress injury in remnant kidney tissue.


2019 ◽  
Vol 44 (2) ◽  
pp. 164-171 ◽  
Author(s):  
Anderson Pedroza ◽  
Diorginis Soares Ferreira ◽  
David F. Santana ◽  
Pedro Thiago da Silva ◽  
Francisco Carlos Amanajás de Aguiar Júnior ◽  
...  

There is a strong correlation between inadequate gestational and postpartum nutrition and the occurrence of cardiovascular diseases. The present study investigated the effects of a maternal low-protein diet and neonatal overfeeding on the oxidative balance and morphology of the renal cortex of male Wistar rats. Two independent protocols were used. First, pregnant Wistar rats received diets containing either 17% (normal protein) or 8% (low protein) casein throughout pregnancy and lactation. Second, the litter size was reduced by one-third on the third postnatal day to induce overnourishment in offspring. At 30 days, the oxidative balance and morphology of the renal cortex were analyzed. There was a small but significant increase in renal corpuscle area in the low protein (LP, 5%) and overnutrition (ON, 8%) groups. Glomerular tuft area also increased in LP (6%) and ON (9%), as did glomerular cellularity (LP, +11%; ON, +12%). In the oxidative stress analyses, both nutritional insults significantly elevated lipid peroxidation (LP, +18%; ON, +135%) and protein oxidation (LP, +40%; ON, +65%) while significantly reducing nonenzymatic antioxidant defenses, measured as reduced glutathione (LP, –32%; ON, –45%) and total thiol content (LP, –28%; ON, –24%). We also observed a decrease in superoxide dismutase (LP, –78%; ON, –51%), catalase (LP, –18%; ON, –61%), and glutathione S-transferase (only in ON, –44%) activities. Our results demonstrate that nutritional insults, even those of a very different nature, during perinatal development can result in similar changes in oxidative parameters and glomerular morphology in the renal cortex.


2016 ◽  
Vol 594 (5) ◽  
pp. 1483-1499 ◽  
Author(s):  
Claudia C Vega ◽  
Luis A Reyes-Castro ◽  
Guadalupe L Rodríguez-González ◽  
Claudia J Bautista ◽  
Magaly Vázquez-Martínez ◽  
...  

2018 ◽  
Vol 34 (3) ◽  
pp. 211-220 ◽  
Author(s):  
Oluwakemi A. Rotimi ◽  
Solomon O. Rotimi ◽  
Flora Oluwafemi ◽  
Oladipo Ademuyiwa ◽  
Elizabeth A. Balogun

Author(s):  
F. G. Zaki

Addition of lithocholic acid (LCA), a naturally occurring bile acid in mammals, to a low protein diet fed to rats induced marked inflammatory reaction in the hepatic cells followed by hydropic degeneration and ductular cell proliferation. These changes were accompanied by dilatation and hyperplasia of the common bile duct and formation of “gallstones”. All these changes were reversible when LCA was withdrawn from the low protein diet except for the hardened gallstones which persisted.Electron microscopic studies revealed marked alterations in the hepatic cells. Early changes included disorganization, fragmentation of the rough endoplasmic reticulum and detachment of its ribosomes. Free ribosomes, either singly or arranged in small clusters were frequently seen in most of the hepatic cells. Vesiculation of the smooth endoplasmic reticulum was often encountered as early as one week after the administration of LCA (Fig. 1).


2013 ◽  
Author(s):  
Francesco Saverio Mennini ◽  
Simone Russo ◽  
Andrea Marcellusi ◽  
Giuseppe Quintaliani ◽  
Denis Fouque

Sign in / Sign up

Export Citation Format

Share Document