Expression profiles of genes associated with immune response and oxidative stress in Atlantic cod, Gadus morhua head kidney leukocytes modulated by live and heat-inactivated intestinal bacteria

Author(s):  
Carlo C. Lazado ◽  
Christopher Marlowe A. Caipang ◽  
Sanchala Gallage ◽  
Monica F. Brinchmann ◽  
Viswanath Kiron
2009 ◽  
Vol 36 (4) ◽  
pp. 883-891 ◽  
Author(s):  
Carlo C. Lazado ◽  
Christopher Marlowe A. Caipang ◽  
Sanchala Gallage ◽  
Monica F. Brinchmann ◽  
Viswanath Kiron

2017 ◽  
Vol 63 ◽  
pp. 237-244 ◽  
Author(s):  
Jia Xie ◽  
Chunfeng Zhao ◽  
Qian Han ◽  
Hailong Zhou ◽  
Qingxiao Li ◽  
...  

2001 ◽  
Vol 204 (1) ◽  
pp. 157-164 ◽  
Author(s):  
M.P. Lesser ◽  
J.H. Farrell ◽  
C.W. Walker

Decreases in stratospheric ozone levels from anthropogenic inputs of chlorinated fluorocarbons have resulted in an increased amount of harmful ultraviolet-B (UVB, 290–320 nm) radiation reaching the sea surface in temperate latitudes (30–50 degrees N). In the Gulf of Maine, present-day irradiances of ultraviolet-A (UVA, 320–400 nm) radiation can penetrate to depths of 23 m and UVB radiation can penetrate to depths of 7–12 m, where the rapidly developing embryos and larvae of the Atlantic cod (Gadus morhua) are known to occur. Laboratory exposures of embryos and larvae of Atlantic cod to ultraviolet radiation (UVR) equivalent to a depth of approximately 10 m in the Gulf of Maine resulted in significant mortality of developing embryos and a decrease in standard length at hatching for yolk-sac larvae. Larvae at the end of the experimental period also had lower concentrations of UVR-absorbing compounds and exhibited significantly greater damage to their DNA, measured as cyclobutane pyrimidine dimer formation, after exposure to UVB radiation. Larvae exposed to UVB radiation also exhibited significantly higher activities and protein concentrations of the antioxidant enzyme superoxide dismutase and significantly higher concentrations of the transcriptional activator p53. p53 is expressed in response to DNA damage and can result in cellular growth arrest in the G1- to S-phase of the cell cycle or to programmed cell death (apoptosis). Cellular death caused by apoptosis is the most likely cause of mortality in embryos and larvae in these laboratory experiments, while the smaller size at hatching in those larvae that survived is caused by permanent cellular growth arrest in response to DNA damage. In addition, the sub-lethal energetic costs of repairing DNA damage or responding to oxidative stress may also contribute to poor individual performance in surviving larvae that could also lead to increases in mortality. The irradiances of UVB radiation that elicit these responses in cod larvae can occur in many temperate latitudes, where these ecologically and commercially important fish are known to spawn, and may contribute to the high mortality of cod embryos and larvae in their natural environment.


2020 ◽  
Vol 178 (2) ◽  
pp. 311-324
Author(s):  
Marisa Pfohl ◽  
Lishann Ingram ◽  
Emily Marques ◽  
Adam Auclair ◽  
Benjamin Barlock ◽  
...  

Abstract Perfluoroalkyl substances (PFAS) represent a family of environmental toxicants that have infiltrated the living world. This study explores diet-PFAS interactions and the impact of perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic (PFHxS) on the hepatic proteome and blood lipidomic profiles. Male C57BL/6J mice were fed with either a low-fat diet (10.5% kcal from fat) or a high fat (58% kcal from fat) high carbohydrate (42 g/l) diet with or without PFOS or PFHxS in feed (0.0003% wt/wt) for 29 weeks. Lipidomic, proteomic, and gene expression profiles were determined to explore lipid outcomes and hepatic mechanistic pathways. With administration of a high-fat high-carbohydrate diet, PFOS and PFHxS increased hepatic expression of targets involved in lipid metabolism and oxidative stress. In the blood, PFOS and PFHxS altered serum phosphatidylcholines, phosphatidylethanolamines, plasmogens, sphingomyelins, and triglycerides. Furthermore, oxidized lipid species were enriched in the blood lipidome of PFOS and PFHxS treated mice. These data support the hypothesis that PFOS and PFHxS increase the risk of metabolic and inflammatory disease induced by diet, possibly by inducing dysregulated lipid metabolism and oxidative stress.


BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 72 ◽  
Author(s):  
Tiago S Hori ◽  
A Kurt Gamperl ◽  
Luis OB Afonso ◽  
Stewart C Johnson ◽  
Sophie Hubert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document