Influence of reduced sulfur on carbon fixation efficiency of Halothiobacillus neapolitanus and its mechanism

2017 ◽  
Vol 326 ◽  
pp. 249-256 ◽  
Author(s):  
Ya-nan Wang ◽  
Yiu Fai Tsang ◽  
Lei Wang ◽  
Xiaohua Fu ◽  
Huan Li ◽  
...  
Author(s):  
Jonathan Hunter ◽  
Maria Marasco ◽  
Ilerioluwa Sowande ◽  
Newton Hilliard

2004 ◽  
Vol 186 (3) ◽  
pp. 623-630 ◽  
Author(s):  
Anthony K.-C. So ◽  
George S. Espie ◽  
Eric B. Williams ◽  
Jessup M. Shively ◽  
Sabine Heinhorst ◽  
...  

ABSTRACT A significant portion of the total carbon fixed in the biosphere is attributed to the autotrophic metabolism of prokaryotes. In cyanobacteria and many chemolithoautotrophic bacteria, CO2 fixation is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), most if not all of which is packaged in protein microcompartments called carboxysomes. These structures play an integral role in a cellular CO2-concentrating mechanism and are essential components for autotrophic growth. Here we report that the carboxysomal shell protein, CsoS3, from Halothiobacillus neapolitanus is a novel carbonic anhydrase (ε-class CA) that has an evolutionary lineage distinct from those previously recognized in animals, plants, and other prokaryotes. Functional CAs encoded by csoS3 homologues were also identified in the cyanobacteria Prochlorococcus sp. and Synechococcus sp., which dominate the oligotrophic oceans and are major contributors to primary productivity. The location of the carboxysomal CA in the shell suggests that it could supply the active sites of RuBisCO in the carboxysome with the high concentrations of CO2 necessary for optimal RuBisCO activity and efficient carbon fixation in these prokaryotes, which are important contributors to the global carbon cycle.


2021 ◽  
Author(s):  
Yaqi Sun ◽  
Victoria M. Harman ◽  
James R. Johnson ◽  
Taiyu Chen ◽  
Gregory F. Dykes ◽  
...  

AbstractCarboxysomes are anabolic bacterial microcompartments that play an essential role in carbon fixation in cyanobacteria and some chemoautotrophs. This self-assembling organelle encapsulates the key CO2-fixing enzymes, Rubisco, and carbonic anhydrase using a polyhedral protein shell that is constructed by hundreds of shell protein paralogs. The α-carboxysome from the chemoautotroph Halothiobacillus neapolitanus serves as a model system in fundamental studies and synthetic engineering of carboxysomes. Here we adopt a QconCAT-based quantitative mass spectrometry to determine the absolute stoichiometric composition of native α-carboxysomes from H. neapolitanus. We further performed an in-depth comparison of the protein stoichiometry of native and recombinant α-carboxysomes heterologously generated in Escherichia coli to evaluate the structural variability and remodeling of α-carboxysomes. Our results provide insight into the molecular principles that mediate carboxysome assembly, which may aid in rational design and reprogramming of carboxysomes in new contexts for biotechnological applications.


Author(s):  
Gunnel Karlsson ◽  
Jan-Olov Bovin ◽  
Michael Bosma

RuBisCO (D-ribulose-l,5-biphosphate carboxylase/oxygenase) is the most aboundant enzyme in the plant cell and it catalyses the key carboxylation reaction of photosynthetic carbon fixation, but also the competing oxygenase reaction of photorespiation. In vitro crystallized RuBisCO has been studied earlier but this investigation concerns in vivo existance of RuBisCO crystals in anthers and leaves ofsugarbeets. For the identification of in vivo protein crystals it is important to be able to determinethe unit cell of cytochemically identified crystals in the same image. In order to obtain the best combination of optimal contrast and resolution we have studied different staining and electron accelerating voltages. It is known that embedding and sectioning can cause deformation and obscure the unit cell parameters.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (4) ◽  
pp. 265-272 ◽  
Author(s):  
ROHAN BANDEKAR ◽  
JIM FREDERICK ◽  
JAROSLAV STAVIK

This study addresses the challenges a dissolving-grade pulp mill in Canada faced in 2014 in meeting its total reduced sulfur (TRS) gas emission limit. These emissions from the recovery boiler exit are controlled by passing the boiler exit gas through a TRS scrubber system. The mill employs a cyclonic direct contact evaporator to concentrate black liquor to firing solids content. The off-gases from the direct contact evaporator flow to the effluent gas control system that consists of a venturi scrubber, a packed bed scrubber, and a heat recovery unit. Emissions of TRS greater than the regulated limit of 15 ppm were observed for a 4-month period in 2014. The level of emissions measured during this period was significantly higher than about 12 ppm, the expected average value based on historic experience. The problem persisted from mid-June 2014 until the annual mill shutdown in October 2014. The main TRS components detected and the performance of the Teller scrubber in capturing them are examined. Other potential causes for these emissions are identified, including mechanical problems such as broken packing in the TRS packed bed scrubber, broken baffle plates in the scrubber, and cyclone evaporator leaks causing air ingress. Repairs were carried out during the mill shutdown, which eliminated the TRS emissions problem.


2000 ◽  
Vol 1 (1) ◽  
pp. 235-244
Author(s):  
Ahmed Hamad ◽  
Mohamed Osman ◽  
Refaat Abdel-Basset

Author(s):  
Francesco Di Nezio ◽  
Clarisse Beney ◽  
Samuele Roman ◽  
Francesco Danza ◽  
Antoine Buetti-Dinh ◽  
...  

Abstract Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community, and exibiting different phenotypes: 1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, 2) the small-celled PSB Thiodictyon syntrophicum, and 3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.


Sign in / Sign up

Export Citation Format

Share Document