Hydrogen transfer effect and reaction mechanism for catalytic hydrolysis of HCN in ionic liquids: A density functional theory study

2018 ◽  
Vol 348 ◽  
pp. 630-636 ◽  
Author(s):  
Xin Song ◽  
Ping Ning ◽  
Kai Li ◽  
Xin Sun ◽  
Chi Wang ◽  
...  
2017 ◽  
Vol 414 ◽  
pp. 345-352 ◽  
Author(s):  
Xin Song ◽  
Ping Ning ◽  
Chi Wang ◽  
Kai Li ◽  
Lihong Tang ◽  
...  

Author(s):  
Houyu Zhu ◽  
Xin Li ◽  
Naiyou Shi ◽  
Xuefei Ding ◽  
Zehua Yu ◽  
...  

Ni/ZnO catalysts have been well recognized by industry and academia for exhibiting excellent desulfurization activities. However, intrinsic reaction mechanism on Ni active center is still obscure. Herein, we performed periodic...


RSC Advances ◽  
2015 ◽  
Vol 5 (43) ◽  
pp. 34319-34326 ◽  
Author(s):  
Lianyang Zhang ◽  
Junhui Jiang ◽  
Wei Shi ◽  
Shengjie Xia ◽  
Zheming Ni ◽  
...  

The hydrogenation mechanism of nitrobenzene to aniline on Pd3/Pt(111) surface preferentially follows the direct route and fits best the Jackson reaction mechanism (mechanism B).


2013 ◽  
Vol 807-809 ◽  
pp. 543-548 ◽  
Author(s):  
Yan Fei Chen ◽  
Yan Hong Cui ◽  
Dong Shun Deng ◽  
Ning Ai

The absorptions of CO2on the 1-butyl-3-methylimidazolium acetate ([Bmi [Ac]) with different substituents are calculated systematically at GGA/PW91 level. Three hydrogen bonds are formed between [A and cations of 1-n-[Bmi [A ([NBmi+) and 1-tert-[Bmi [A ([TBmi+). The interaction between CO2and the [NBmi [A by a C-O bond is much weaker than that with the [TBmi [A by forming a O...O...C...C four member-ring. The chemisorption of CO2on the ion pairs of [NBmi [A is much weaker than that on the [TBmi [A, resulted from the absorption energies analysis. The frontier molecular orbitals shows the electronic density overlap between absorbed CO2and the [A in CO2-[NBmi [A is much weaker than that in [TBmi [A. Therefore, the chemisorption of CO2on the ion pair of [NBmi [A is much weaker than that on the [TBmi [A. The ionic liquids based [NBmi+can be used repetitively, and the adsorbed CO2would be easier desorbed.


2007 ◽  
Vol 06 (01) ◽  
pp. 1-12 ◽  
Author(s):  
JIAN-HUA XU ◽  
LAI-CAI LI ◽  
YAN ZHENG ◽  
JUN-LING LIU ◽  
XIN WANG

The reaction mechanisms of HNCS with CH 2 CH radical have been investigated by density functional theory (DFT). The geometries and harmonic frequencies of the reactants, intermediates, transition states and products have been calculated at the B3LYP/6-311++G(d,p) level. The results show that the reaction is very complicated. Nine possible reaction pathways were identified. The results show that the most feasible reaction channel is the hydrogen-transfer pathway CH 2 CH + HNCS → IMA1 → TSA1 → CH 2 CHH + NCS . The pathway VIC C-S addition channel ( CH 2 CH + HNCS → TSD5 → IMD4 → TSD9 → CH 2 CHS + CNH ) can also occur easily. Ethene and radical NCS is the main product of the studied reaction, and product P8 ( CH 2 CHS and CNH ) may also be observed. Compared with our previous study on the reaction HNCS + CH 2 CH , the present reaction is easier to proceed.


2018 ◽  
Vol 20 (36) ◽  
pp. 23311-23319 ◽  
Author(s):  
Po-Yu Yang ◽  
Hsing-Yin Chen ◽  
Shin-Pon Ju ◽  
Chia-Lin Chang ◽  
Gao-Shee Leu ◽  
...  

The detailed reaction mechanism of naphthalene catalytic polymerization by HF/BF3 has been investigated by DFT calculations and the directionality of the naphthalene-derived mesophase molecule has been explained.


Sign in / Sign up

Export Citation Format

Share Document