Enhanced nitrate removal by micro-electrolysis using Fe0 and surfactant modified activated carbon

2019 ◽  
Vol 357 ◽  
pp. 180-187 ◽  
Author(s):  
Lianggen Ao ◽  
Fan Xia ◽  
Yang Ren ◽  
Jian Xu ◽  
Dezhi Shi ◽  
...  
2019 ◽  
Vol 68 (8) ◽  
pp. 744-756 ◽  
Author(s):  
Junyu Zhang ◽  
Rajendra Prasad Singh ◽  
Yunzhe Liu ◽  
Dafang Fu

Abstract Bioretention, initially designed for treating discontinuous runoff pollution, faces considerable challenges in its trade-off between the hydraulic retention time (HRT) and its treatment capacity. In this study, six enhanced submerged media together with four HRTs were designed for bioretention cells to treat the highly nitrogenous river water in Tai lake basin in Yangtze River delta, China. Results revealed that bioretention with activated carbon has the highest removal of nitrate (NO3−-N) (93–96%) compared with surfactant-modified activated carbon (SMAC), surfactant-modified zeolite (SMZ), zeolite, fly ash and ceramsite. Although the SMAC had the best absorption for NO3−-N and could desorb NO3−-N when its concentration was low in the submerged layer, the desorbed surfactant could inhibit the growth of denitrifying bacteria, which leads to low removal efficiency (49–66%). The dynamic balancing of NO3−-N desorption and denitrifying system restrain in the SMAC device was observed and explained. The best activated carbon-gravel proportion in the submerged layer was 1:1 (150 mm). Such design could ensure the stable and efficient NO3−-N removal rate (93–94%) under high inflow concentration (28.9 mg/L) and high hydraulic loading (8.2 cm/h).


2018 ◽  
Vol 19 (4) ◽  
pp. 1097-1102 ◽  
Author(s):  
Abooalfazl Azhdarpoor ◽  
Leila Khosrozadeh ◽  
Mohammadreza Shirdarreh

Abstract Pollution of surface and ground waters with nitrate is a serious issue in many regions of the world. Therefore, this study attempts to investigate the extent of nitrate removal from aqueous solutions using a new complex of activated carbon. The effects of operating parameters such as pH of solution (3 to 9), adsorbent dosage (0.4 to 5 g in 50 mL), contact time (5 to 300 min) and initial concentration of nitrate (50 to 300 mg L−1) were studied. The highest efficiency of nitrate removal (95.4%) was related to application of modified activated carbon to a solution with pH of 7 and 100 mg L−1 nitrate concentration. Increasing the amount of modified activated carbon from 0.5 to 1 g in 50 mL promoted removal of nitrate from 82.6% to 94.1%. Furthermore, increasing contact time from 5 to 30 min improved removal efficiency from 76.6% to 92.3%. The obtained experimental data were compatible with the Langmuir isotherm model. In general, the results demonstrated that employing Fe3+-modified activated carbon can be considered as a new method of nitrate removal from aqueous solutions due its convenience, safety and high efficiency.


2012 ◽  
Vol 11 (8) ◽  
pp. 1433-1438 ◽  
Author(s):  
Jinren Ni ◽  
Guangzhi Zhang ◽  
Hao Hu ◽  
Weiling Sun ◽  
Bin Zhao ◽  
...  

Author(s):  
Zhirui Li ◽  
Yuqi Jin ◽  
Tong Chen ◽  
Feng Tang ◽  
Jie Cai ◽  
...  

Heliyon ◽  
2021 ◽  
pp. e07191
Author(s):  
Fateme Barjasteh-Askari ◽  
Mojtaba Davoudi ◽  
Maryam Dolatabadi ◽  
Saeid Ahmadzadeh

2021 ◽  
Vol 46 ◽  
pp. 101476
Author(s):  
Azeem Sarwar ◽  
Majid Ali ◽  
Asif Hussain Khoja ◽  
Azra Nawar ◽  
Adeel Waqas ◽  
...  

2012 ◽  
Vol 1 (3) ◽  
pp. 75 ◽  
Author(s):  
W.D.P Rengga ◽  
M. Sudibandriyo ◽  
M Nasikin

Gas storage is a technology developed with an adsorptive storage method, in which gases are stored as adsorbed components on the certain adsorbent. Formaldehyde is one of the major indoor gaseous pollutants. Depending on its concentration, formaldehyde may cause minor disorder symptoms to a serious injury. Some of the successful applications of technology for the removal of formaldehyde have been reported. However, this paper presents an overview of several studies on the elimination of formaldehyde that has been done by adsorption method because of its simplicity. The adsorption method does not require high energy and the adsorbent used can be obtained from inexpensive materials. Most researchers used activated carbon as an adsorbent for removal of formaldehyde because of its high adsorption capacity. Activated carbons can be produced from many materials such as coals, woods, or agricultural waste. Some of them were prepared by specific activation methods to improve the surface area. Some researchers also used modified activated carbon by adding specific additive to improve its performance in attracting formaldehyde molecules. Proposed modification methods on activation and additive impregnated carbon are thus discussed in this paper for future development and improvement of formaldehyde adsorption on activated carbon. Specifically, a waste agricultural product is chosen for activated carbon raw material because it is renewable and gives an added value to the materials. The study indicates that the performance of the adsorption of formaldehyde might be improved by using modified activated carbon. Bamboo seems to be the most appropriate raw materials to produce activated carbon combined with applying chemical activation method and addition of metal oxidative catalysts such as Cu or Ag in nano size particles. Bamboo activated carbon can be developed in addition to the capture of formaldehyde as well as the storage of adsorptive hydrogen gas that supports renewable energy. Keywords: adsorption; bamboo; formaldehyde; modified activated carbon; nano size particles


Sign in / Sign up

Export Citation Format

Share Document