Hybrid catalytic ozonation-membrane filtration process with CeOx and MnOx impregnated catalytic ceramic membranes for micropollutants degradation

2019 ◽  
Vol 378 ◽  
pp. 121670 ◽  
Author(s):  
Wen Jie Lee ◽  
Yueping Bao ◽  
Xiao Hu ◽  
Teik-Thye Lim
2016 ◽  
Vol 75 (2) ◽  
pp. 439-450 ◽  
Author(s):  
Asmaa Ali ◽  
Abdelkader Ahmed ◽  
Ali Gad

This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb2+, Cu2+, and Cd2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.


Author(s):  
Rosiah Rohani ◽  
Izzati Izni Yusoff ◽  
Nadiah Khairul Zaman ◽  
Arshid Mahmood Ali ◽  
Nadiatul Atalia Balqis Rusli ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 55-66
Author(s):  
Amélie Vallet-Courbin ◽  
Soizic Lacampagne ◽  
Rose Marie Canal-Llauberes ◽  
Sigolène Mattalana Malzieu ◽  
Tihomir Kanev ◽  
...  

A new Test of Filterability has been developed. Measurements carried out with different types of wines indicate that the new filterability index is a useful tool for understanding and predicting the propensity to fouling of treated or untreated wines, e.g. with or without enzyme addition. The measurement method used in the Test of Filterability, requires only one type of membrane for all types of wine, and uses the same equipment as the traditional Fouling Index. Numerous trials have demonstrated that the filtration of wines is governed by standard blocking law. The definition of the new Test of Filterability, based on this filtration law, is proposed. The choice of membrane and the selection of the optimal pore size were based on the results of the experiments. Current methods used for the determination of fouling properties in wine filtration have been developed for the membrane filtration of small quantities of suspended matter. Enzyme treatment is a process often used in wine clarification. The new Test of Filterability indicates the best conditions for the filtration of all types of wines. The test is easy to implement and has been validated with various wines. This new Test of Filterability is an important tool for winemakers as it constitutes a simplified test of a wine's filterability. The new test may also be used to determine the filtration process that is best adapted to each wine while reducing the number of operations. The same approach may be adopted for the filtration of other liquids. 


Sign in / Sign up

Export Citation Format

Share Document