Immobilization of mercury by iron sulfide nanoparticles alters mercury speciation and microbial methylation in contaminated groundwater

2020 ◽  
Vol 381 ◽  
pp. 122664 ◽  
Author(s):  
Mengxia Wang ◽  
Yanling Li ◽  
Dongye Zhao ◽  
Li Zhuang ◽  
Guiqin Yang ◽  
...  
2013 ◽  
Vol 47 (23) ◽  
pp. 13239-13249 ◽  
Author(s):  
Carl H. Lamborg ◽  
Doug B. Kent ◽  
Gretchen J. Swarr ◽  
Kathleen M. Munson ◽  
Tristan Kading ◽  
...  

Author(s):  
Thao A. Nguyen

It is well known that the large deviations from stoichiometry in iron sulfide compounds, Fe1-xS (0≤x≤0.125), are accommodated by iron vacancies which order and form superstructures at low temperatures. Although the ordering of the iron vacancies has been well established, the modes of vacancy ordering, hence superstructures, as a function of composition and temperature are still the subject of much controversy. This investigation gives direct evidence from many-beam lattice images of Fe1-xS that the 4C superstructure transforms into the 3C superstructure (Fig. 1) rather than the MC phase as previously suggested. Also observed are an intrinsic stacking fault in the sulfur sublattice and two different types of vacancy-ordering antiphase boundaries. Evidence from selective area optical diffractograms suggests that these planar defects complicate the diffraction pattern greatly.


Planta Medica ◽  
2011 ◽  
Vol 77 (05) ◽  
Author(s):  
B Avula ◽  
YH Wang ◽  
CS Rumalla ◽  
AG Chittiboyina ◽  
A Srivastava ◽  
...  

2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


Sign in / Sign up

Export Citation Format

Share Document