Ultra-stable and high capacity flexible lithium-ion batteries based on bimetallic MOFs derivatives aiming for wearable electronic devices

2021 ◽  
pp. 129200
Author(s):  
Junjie Peng ◽  
Jun Tao ◽  
Zhijie Liu ◽  
Yuhang Yang ◽  
Lian Yu ◽  
...  
Author(s):  
Fangfang Xue ◽  
Yangyang Li ◽  
Chen Liu ◽  
Zhigang Zhang ◽  
Jun Lin ◽  
...  

Constructing suitable electrode materials with high capacity and excellent mechanical property is indispensable for flexible lithium-ion batteries (LIBs) to satisfy the growing flexible and wearable electronic devices. Herein, a necklace-like...


NANO ◽  
2019 ◽  
Vol 14 (02) ◽  
pp. 1930001 ◽  
Author(s):  
Xiaobei Zang ◽  
Teng Wang ◽  
Zhiyuan Han ◽  
Lingtong Li ◽  
Xin Wu

The upcoming energy crisis and the increasing power requirements of electronic devices have drawn enormous attention to research in the field of energy storage. Owing to compelling electrochemical and mechanical properties, two-dimensional nanomaterials can be used as electrodes on lithium-ion batteries to obtain high capacity and long cycle life. This review summarized the recent advances in the application of 2D nanomaterials on the electrode materials of lithium-ion batteries.


Author(s):  
Shaohua Lu ◽  
Weidong Hu ◽  
Xiaojun Hu

Due to their low cost and improved safety compared to lithium-ion batteries, sodium-ion batteries have attracted worldwide attention in recent decades.


2016 ◽  
Vol E99.B (1) ◽  
pp. 186-191 ◽  
Author(s):  
Takeshi ISHIDA ◽  
Fengchao XIAO ◽  
Yoshio KAMI ◽  
Osamu FUJIWARA ◽  
Shuichi NITTA

2019 ◽  
Vol 7 (29) ◽  
pp. 17357-17365 ◽  
Author(s):  
Bozhao Wu ◽  
Xiangzheng Jia ◽  
Yanlei Wang ◽  
Jinxi Hu ◽  
Enlai Gao ◽  
...  

A new graphyne with high stability, excellent flexibility and carrier mobility is theoretically predicted as a promising anode material for lithium-ion batteries with high capacity.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1500
Author(s):  
Songrui Wei ◽  
Xiaoqi Liao ◽  
Han Zhang ◽  
Jianhua Pang ◽  
Yan Zhou

Fluxgate magnetic sensors are especially important in detecting weak magnetic fields. The mechanism of a fluxgate magnetic sensor is based on Faraday’s law of electromagnetic induction. The structure of a fluxgate magnetic sensor mainly consists of excitation windings, core and sensing windings, similar to the structure of a transformer. To date, they have been applied to many fields such as geophysics and astro-observations, wearable electronic devices and non-destructive testing. In this review, we report the recent progress in both the basic research and applications of fluxgate magnetic sensors, especially in the past two years. Regarding the basic research, we focus on the progress in lowering the noise, better calibration methods and increasing the sensitivity. Concerning applications, we introduce recent work about fluxgate magnetometers on spacecraft, unmanned aerial vehicles, wearable electronic devices and defect detection in coiled tubing. Based on the above work, we hope that we can have a clearer prospect about the future research direction of fluxgate magnetic sensor.


Sign in / Sign up

Export Citation Format

Share Document