Engineering flexible carbon nanofibers concatenated MOFs-derived hollow octahedral CoFe2O4 as anode materials for enhanced lithium storage

Author(s):  
Fangfang Xue ◽  
Yangyang Li ◽  
Chen Liu ◽  
Zhigang Zhang ◽  
Jun Lin ◽  
...  

Constructing suitable electrode materials with high capacity and excellent mechanical property is indispensable for flexible lithium-ion batteries (LIBs) to satisfy the growing flexible and wearable electronic devices. Herein, a necklace-like...

NANO ◽  
2019 ◽  
Vol 14 (02) ◽  
pp. 1930001 ◽  
Author(s):  
Xiaobei Zang ◽  
Teng Wang ◽  
Zhiyuan Han ◽  
Lingtong Li ◽  
Xin Wu

The upcoming energy crisis and the increasing power requirements of electronic devices have drawn enormous attention to research in the field of energy storage. Owing to compelling electrochemical and mechanical properties, two-dimensional nanomaterials can be used as electrodes on lithium-ion batteries to obtain high capacity and long cycle life. This review summarized the recent advances in the application of 2D nanomaterials on the electrode materials of lithium-ion batteries.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850068 ◽  
Author(s):  
Changlei Niu

Aluminium has shown its superiority in stabilization of the monoclinic VO2(B) in free-standing nanobelts. In this paper, aluminium-doped VO2(B) nanobelts are successfully fabricated by a facile one-step hydrothermal method and used as cathode for lithium-ion battery. XPS results show that Al-doping promotes the formation of high valence state of vanadium in VO2(B) nanobelts. Due to the accommodation of valence state of vanadium and lattice volume, Al-doped VO2(B) nanobelts used as the cathode material for lithium-ion batteries exhibit better lithium storage properties with high capacity of 172[Formula: see text]mAh[Formula: see text]g[Formula: see text] and cycling stability than undoped VO2(B) nanobelts. This work demonstrates that the doping of aluminium can significantly enhance the electrochemical performance of VO2(B), suggesting that appropriate cationic doping is an efficient path to improve the electrochemical performance of electrode materials.


2014 ◽  
Vol 1070-1072 ◽  
pp. 483-487
Author(s):  
Yong Qiang Yang ◽  
Hong Kang Deng ◽  
Ling Jin ◽  
Yuan Liu ◽  
Yao Lu

A novel two-dimensional carbon nanomaterials was prepared through a facile hydrothermal method, using glucose as the carbon precursor and sodium borohydride as the structure directing agent. The application of as-obtained carbon nanomaterials after annealing in inert atmosphere as the anode of lithium ion batteries (LIBs) was explored. The results demonstrate the carbon nanomaterials can exhibit more excellent lithium storage properties with high capacity and superior rate properties than the graphite as a kind of common anode materials.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2053
Author(s):  
Oyunbayar Nyamaa ◽  
Duck-Hyeon Seo ◽  
Jun-Seok Lee ◽  
Hyo-Min Jeong ◽  
Sun-Chul Huh ◽  
...  

Recently, applications for lithium-ion batteries (LIBs) have expanded to include electric vehicles and electric energy storage systems, extending beyond power sources for portable electronic devices. The power sources of these flexible electronic devices require the creation of thin, light, and flexible power supply devices such as flexile electrolytes/insulators, electrode materials, current collectors, and batteries that play an important role in packaging. Demand will require the progress of modern electrode materials with high capacity, rate capability, cycle stability, electrical conductivity, and mechanical flexibility for the time to come. The integration of high electrical conductivity and flexible buckypaper (oxidized Multi-walled carbon nanotubes (MWCNTs) film) and high theoretical capacity silicon materials are effective for obtaining superior high-energy-density and flexible electrode materials. Therefore, this study focuses on improving the high-capacity, capability-cycling stability of the thin-film Si buckypaper free-standing electrodes for lightweight and flexible energy-supply devices. First, buckypaper (oxidized MWCNTs) was prepared by assembling a free stand-alone electrode, and electrical conductivity tests confirmed that the buckypaper has sufficient electrical conductivity (10−4(S m−1) in LIBs) to operate simultaneously with a current collector. Subsequently, silicon was deposited on the buckypaper via magnetron sputtering. Next, the thin-film Si buckypaper freestanding electrodes were heat-treated at 600 °C in a vacuum, which improved their electrochemical performance significantly. Electrochemical results demonstrated that the electrode capacity can be increased by 27/26 and 95/93 μAh in unheated and heated buckypaper current collectors, respectively. The measured discharge/charge capacities of the USi_HBP electrode were 108/106 μAh after 100 cycles, corresponding to a Coulombic efficiency of 98.1%, whereas the HSi_HBP electrode indicated a discharge/charge capacity of 193/192 μAh at the 100th cycle, corresponding to a capacity retention of 99.5%. In particular, the HSi_HBP electrode can decrease the capacity by less than 1.5% compared with the value of the first cycle after 100 cycles, demonstrating excellent electrochemical stability.


RSC Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 1200-1221
Author(s):  
Minkang Wang ◽  
Tianrui Chen ◽  
Tianhao Liao ◽  
Xinglong Zhang ◽  
Bin Zhu ◽  
...  

The development of new electrode materials for lithium-ion batteries (LIBs) has attracted significant attention because commercial anode materials in LIBs, like graphite, may not be able to meet the increasing energy demand of new electronic devices.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1730 ◽  
Author(s):  
Ha Tran Huu ◽  
Xuan Dieu Nguyen Thi ◽  
Kim Nguyen Van ◽  
Sung Jin Kim ◽  
Vien Vo

The demand for well-designed nanostructured composites with enhanced electrochemical performance for lithium-ion batteries electrode materials has been emerging. In order to improve the electrochemical performance of MoS2-based anode materials, MoS2 nanosheets integrated with g-C3N4 (MoS2/g-C3N4 composite) was synthesized by a facile heating treatment from the precursors of thiourea and sodium molybdate at 550 °C under N2 gas flow. The structure and composition of MoS2/g-C3N4 were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis and elemental analysis. The lithium storage capability of the MoS2/g-C3N4 composite was evaluated, indicating high capacity and stable cycling performance at 1 C (A·g−1) with a reversible capacity of 1204 mA·h·g−1 for 200 cycles. This result is believed the role of g-C3N4 as a supporting material to accommodate the volume change and improve charge transport for nanostructured MoS2. Additionally, the contribution of the pseudocapacitive effect was also calculated to further clarify the enhancement in Li-ion storage performance of the composite.


2020 ◽  
Vol 13 (06) ◽  
pp. 2051039
Author(s):  
Long Huang ◽  
Peng Huang ◽  
Peng Chen ◽  
Yuan-Li Ding

Alloying-based electrode materials (e.g. Si, Sn, Sb, Bi, etc.) are the promising anode candidates for next-generation lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) owing to their high specific capacities, but they suffer from huge volume changes upon lithium/sodium insertion/extraction processes. On the other hand, such alloying anodes usually require a complicated and high energy-consumption synthesis process (e.g. Si anode by a magnesiothermic reduction at over [Formula: see text]C, Sn, Sb and Bi anodes by a high-temperature carbothermic reduction at 600–[Formula: see text]C), thus limiting their practical application for replacing low-cost graphite. In this work, we develop a straightforward solid-state strategy for a general synthesis of metal nanodots (Sn, Sb and Bi) supported on carbon nanotubes (CNTs) by using the reduction potential differences of metal salts and NaBH4 as the reaction power at room temperature. Owing to the very mild reaction, the resulted active component is small enough (2–5[Formula: see text]nm) with diffusion-less and nucleation-less barriers upon alloying/dealloying reaction, thus enabling high electrode stability and high capacity retention. Taking Sn anode as an example, the obtained Sn/CNTs deliver a high reversible capacity of 415[Formula: see text]mAh g[Formula: see text] at 0.5[Formula: see text]A g[Formula: see text] after 1000 cycles without obvious capacity decay. Such findings indicate that the proposed solid-state synthetic method could offer a great potential for realizing large-scale and economic applications of energy storage materials.


Sign in / Sign up

Export Citation Format

Share Document