Self-sealing hemostatic and antibacterial needles by polyphenol-assisted surface self-assembly of multifunctional nanoparticles

2021 ◽  
pp. 130621
Author(s):  
Yang Zhao ◽  
Renfeng Liu ◽  
Yahan Fan ◽  
Baohua Zhao ◽  
Wei Qian ◽  
...  
2010 ◽  
Vol 107 (13) ◽  
pp. 5827-5832 ◽  
Author(s):  
M. P. Nikitin ◽  
T. A. Zdobnova ◽  
S. V. Lukash ◽  
O. A. Stremovskiy ◽  
S. M. Deyev

2017 ◽  
Vol 139 (6) ◽  
pp. 2359-2368 ◽  
Author(s):  
Ruth Röder ◽  
Tobias Preiß ◽  
Patrick Hirschle ◽  
Benjamin Steinborn ◽  
Andreas Zimpel ◽  
...  

2009 ◽  
Vol 08 (06) ◽  
pp. 483-514 ◽  
Author(s):  
DONGLING MA ◽  
ARNOLD KELL

Nanoscale materials with various structures have attracted extensive research interest during the past decade. Among them, hollow, branched and multifunctional nanoparticles comprised of two different nanoparticle components are emerging as new classes of interesting nanomaterials owing to the unique optical, catalytic, electrical, magnetic and mechanical properties associated with their unusual morphologies as well as their potential wide range of applications in various fields such as photothermal therapy, diagnosis, drug delivery, catalysis, optoelectronic, electronics and biodiagnostics. In particular, branched nanoparticles promise to serve as building blocks for more complex materials and advanced devices through self-assembly and self-alignment and heterodimeric nanoparticles show promise for the development of tunable magnetic materials and multimodal biodiagnostic imaging tools.


Nanoscale ◽  
2018 ◽  
Vol 10 (40) ◽  
pp. 19052-19063 ◽  
Author(s):  
Yanlei Liu ◽  
Xiao Zhi ◽  
Wenxiu Hou ◽  
Fangfang Xia ◽  
Jingpu Zhang ◽  
...  

The development of multifunctional nanoparticles for tumor theranostics has become a research hotspot.


2015 ◽  
Vol 3 (7) ◽  
pp. 1134-1146 ◽  
Author(s):  
Jiaolong Lv ◽  
Huanli Sun ◽  
Yan Zou ◽  
Fenghua Meng ◽  
Aylvin A. Dias ◽  
...  

Multifunctional nanoparticles mediate specific and efficient intracellular doxorubicin delivery to asialoglycoprotein receptor-overexpressing hepatoma cells.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Sign in / Sign up

Export Citation Format

Share Document