Insight into mercury-laden activated carbon adsorbent product bonding nature by DFT calculations

2022 ◽  
pp. 134461
Author(s):  
Ruize Sun ◽  
Guangqian Luo ◽  
Hui Wu ◽  
Xian Li ◽  
Hong Tian ◽  
...  
CrystEngComm ◽  
2021 ◽  
Author(s):  
Mainak Karmakar ◽  
Antonio Frontera ◽  
Shouvik Chattopadhyay

The formation of an infinite 1D assembly is governed by the H-bonding interactions in the solid state structure of the two zinc complexes. It has been analyzed energetically using DFT calculations and several computational tools.


2019 ◽  
Vol 6 (2) ◽  
pp. 106-112
Author(s):  
Hassan Rezaei ◽  
Saeedeh Rastegar ◽  
Sanaz Naseri

Developing an adsorbent with natural components is one of the effective methods to reduce the amount of wastewater pollutants. Wastewater reuse can improve the quality of water prior to entering the natural environment. The aim of this study was to evaluate the efficiency of chitosan nano-composite and activated carbon adsorbent in the removal of nitrite, phosphate, and ammonia pollutants from fish farms of Aq-Qala. To prepare the adsorbents, the shrimp shells were converted to nano-chitosan. The date palm kernel was prepared and activated with oxalic acid in pyrolysis furnace by injecting nitrogen gas into activated carbon, then, the nano-composite was prepared from nanochitosan and activated carbon. A field-laboratory study was conducted during the winter of 2018, and then, batches of synthesized nano-composite were investigated and the effects of pH, initial effluent concentration, and adsorption time were investigated. The experiments were performed in the pH range of 5-8, effluent concentration of 25-100 mg/L, and contact time of 15-90 minutes. The results showed that at optimum conditions (pH of 7, effluent concentration of 50 mg/L, and contact time of 60 minutes), the highest removal percentage and adsorption capacity for nitrite, phosphate, and ammonia contaminants were 99.98%, 99.77%, and 65.65%, and 6.65, 6.14, and 7.32 mg/g , respectively. Due to the high removal percentage (99.98%) of the chitosan and activated carbon nano-composite, the adsorbent was highly capable of removing pollutants (nitrite, phosphate, and ammonia).


2018 ◽  
Vol 8 (10) ◽  
pp. 2728-2739 ◽  
Author(s):  
Lili Liu ◽  
Mengting Yu ◽  
Qiang Wang ◽  
Bo Hou ◽  
Yan Liu ◽  
...  

The adsorption configurations, growth modes and morphology of a Ru promoter under the approximate conditions of cobalt catalyzed Fischer–Tropsch synthesis (FTS) were investigated by density functional theory (DFT) calculations.


CrystEngComm ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Saikat Mirdya ◽  
Snehasis Banerjee ◽  
Shouvik Chattopadhyay

A hemi-directed copper(ii)/lead(ii) complex has been synthesized and characterized. The energy of chalcogen–chalcogen and tetrel bonding interactions in this complex was analyzed by DFT calculations.


2019 ◽  
Vol 55 (84) ◽  
pp. 12635-12638 ◽  
Author(s):  
Carlos Bornes ◽  
Mariana Sardo ◽  
Zhi Lin ◽  
Jeffrey Amelse ◽  
Auguste Fernandes ◽  
...  

2D 1H–31P NMR and DFT calculations extend the understanding of TMPO:Brønsted complexes formed at HZSM-5 zeolite surfaces, providing structural insight into the proton-transfer mechanism.


Sign in / Sign up

Export Citation Format

Share Document