scholarly journals The RAD6 DNA Damage Tolerance Pathway Operates Uncoupled from the Replication Fork and Is Functional Beyond S Phase

Cell ◽  
2010 ◽  
Vol 141 (2) ◽  
pp. 255-267 ◽  
Author(s):  
Georgios I. Karras ◽  
Stefan Jentsch
2020 ◽  
Author(s):  
Erin E. Henninger ◽  
Pascale Jolivet ◽  
Emilie Fallet ◽  
Mohcen Benmounah ◽  
Zhou Xu ◽  
...  

AbstractPassage of the replication fork through telomeric repeats necessitates additional DNA processing by DNA repair factors, to regenerate the terminal 3’-overhang structure at leading telomeres. These factors are prevented from promoting telomeric recombination or fusion by an uncharacterized mechanism. Here we show that Rad5, a DNA helicase and ubiquitin ligase involved in the DNA damage tolerance pathway, participates in this mechanism. Rad5 is enriched at telomeres during telomere replication. Accelerated senescence seen in the absence of telomerase and Rad5, can be compensated for by a pathway involving the Rad51 recombinase and counteracted by the helicase Srs2. However, this pathway is only active at short telomeres. Instead, the ubiquitous activity of Rad5 during telomere replication is necessary for the proper reconstitution of the telomeric 3’-overhang, indicating that Rad5 is required to coordinate telomere maturation during telomere replication.


2021 ◽  
Vol 8 ◽  
Author(s):  
Thomas A. Guilliam

The eukaryotic replisome coordinates template unwinding and nascent-strand synthesis to drive DNA replication fork progression and complete efficient genome duplication. During its advancement along the parental template, each replisome may encounter an array of obstacles including damaged and structured DNA that impede its progression and threaten genome stability. A number of mechanisms exist to permit replisomes to overcome such obstacles, maintain their progression, and prevent fork collapse. A combination of recent advances in structural, biochemical, and single-molecule approaches have illuminated the architecture of the replisome during unperturbed replication, rationalised the impact of impediments to fork progression, and enhanced our understanding of DNA damage tolerance mechanisms and their regulation. This review focusses on these studies to provide an updated overview of the mechanisms that support replisomes to maintain their progression on an imperfect template.


2020 ◽  
Author(s):  
Yann Benureau ◽  
Caroline Pouvelle ◽  
Eliana Moreira Tavares ◽  
Pauline Dupaigne ◽  
Emmanuelle Despras ◽  
...  

AbstractDNA lesions in S phase threaten genome stability. The DNA damage tolerance (DDT) pathways overcome these obstacles and allow completion of DNA synthesis by the use of specialised translesion (TLS) DNA polymerases or through recombination-related processes. However, how these mechanisms coordinate with each other and with bulk replication remain elusive. To address these issues, we monitored the variation of replication intermediate architecture in response to ultraviolet irradiation using transmission electron microscopy. We show that the TLS polymerase η, able to accurately bypass the major UV lesion and mutated in the skin cancer-prone xeroderma pigmentosum variant (XPV) syndrome, acts at the replication fork to resolve uncoupling and prevent post-replicative gap accumulation. Repriming occurs as a compensatory mechanism when this on-the-fly mechanism cannot operate, and is therefore predominant in XPV cells. Interestingly, our data support a recombination-independent function of RAD51 at the replication fork to sustain repriming. Finally, we provide evidence for the post-replicative commitment of recombination in gap repair and for pioneering observations of in vivo recombination intermediates. Altogether, we propose a chronology of UV damage tolerance in human cells that highlights the key role of polη in shaping this response and ensuring the continuity of DNA synthesis.


2020 ◽  
Author(s):  
Yi-Chang Wang ◽  
Andrew A. Kelso ◽  
Yi-Hsuan Chen ◽  
Chi-An Hsieh ◽  
Wei-Kai Chen ◽  
...  

2008 ◽  
Vol 7 (5) ◽  
pp. 800-813 ◽  
Author(s):  
Devyani Haldar ◽  
Rohinton T. Kamakaka

ABSTRACT The packaging of eukaryotic DNA into chromatin is likely to be crucial for the maintenance of genomic integrity. Histone acetylation and deacetylation, which alter chromatin accessibility, have been implicated in DNA damage tolerance. Here we show that Schizosaccharomyces pombe Hst4, a homolog of histone deacetylase Sir2, participates in S-phase-specific DNA damage tolerance. Hst4 was essential for the survival of cells exposed to the genotoxic agent methyl methanesulfonate (MMS) as well as for cells lacking components of the DNA damage checkpoint pathway. It was required for the deacetylation of histone H3 core domain residue lysine 56, since a strain with a point mutation of its catalytic domain was unable to deacetylate this residue in vivo. Hst4 regulated the acetylation of H3 K56 and was itself cell cycle regulated. We also show that MMS treatment resulted in increased acetylation of histone H3 lysine 56 in wild-type cells and hst4Δ mutants had constitutively elevated levels of histone H3 K56 acetylation. Interestingly, the level of expression of Hst4 decreased upon MMS treatment, suggesting that the cell regulates access to the site of DNA damage by changing the level of this protein. Furthermore, we find that the phenotypes of both K56Q and K56R mutants of histone H3 were similar to those of hst4Δ mutants, suggesting that proper regulation of histone acetylation is important for DNA integrity. We propose that Hst4 is a deacetylase involved in the restoration of chromatin structure following the S phase of cell cycle and DNA damage response.


2013 ◽  
Vol 32 (9) ◽  
pp. 1307-1321 ◽  
Author(s):  
Román González-Prieto ◽  
Ana M Muñoz-Cabello ◽  
María J Cabello-Lobato ◽  
Félix Prado

DNA Repair ◽  
2008 ◽  
Vol 7 (9) ◽  
pp. 1455-1470 ◽  
Author(s):  
Sanjay D'Souza ◽  
Lauren S. Waters ◽  
Graham C. Walker

Sign in / Sign up

Export Citation Format

Share Document