scholarly journals Ca2+–dimethylphosphate complex formation: Providing insight into Ca2+-mediated local dehydration and membrane fusion in cells

2008 ◽  
Vol 32 (4) ◽  
pp. 361-366 ◽  
Author(s):  
Jeffrey J. Potoff ◽  
Zeena Issa ◽  
Charles W. Manke Jr. ◽  
Bhanu P. Jena
2011 ◽  
Vol 100 (3) ◽  
pp. 185a
Author(s):  
Jiajie Diao ◽  
Janghyun Yoo ◽  
Han-Ki Lee ◽  
Yoosoo Yang ◽  
Dae-Hyuk Kweon ◽  
...  

1994 ◽  
Vol 125 (3) ◽  
pp. 625-638 ◽  
Author(s):  
J Lukas ◽  
H Müller ◽  
J Bartkova ◽  
D Spitkovsky ◽  
A A Kjerulff ◽  
...  

The retinoblastoma gene product (pRB) participates in the regulation of the cell division cycle through complex formation with numerous cellular regulatory proteins including the potentially oncogenic cyclin D1. Extending the current view of the emerging functional interplay between pRB and D-type cyclins, we now report that cyclin D1 expression is positively regulated by pRB. Cyclin D1 mRNA and protein is specifically downregulated in cells expressing SV40 large T antigen, adenovirus E1A, and papillomavirus E7/E6 oncogene products and this effect requires intact RB-binding, CR2 domain of E1A. Exceptionally low expression of cyclin D1 is also seen in genetically RB-deficient cell lines, in which ectopically expressed wild-type pRB results in specific induction of this G1 cyclin. At the functional level, antibody-mediated cyclin D1 knockout experiments demonstrate that the cyclin D1 protein, normally required for G1 progression, is dispensable for passage through the cell cycle in cell lines whose pRB is inactivated through complex formation with T antigen, E1A, or E7 oncoproteins as well as in cells which have suffered loss-of-function mutations of the RB gene. The requirement for cyclin D1 function is not regained upon experimental elevation of cyclin D1 expression in cells with mutant RB, while reintroduction of wild-type RB into RB-deficient cells leads to restoration of the cyclin D1 checkpoint. These results strongly suggest that pRB serves as a major target of cyclin D1 whose cell cycle regulatory function becomes dispensable in cells lacking functional RB. Based on available data including this study, we propose a model for an autoregulatory feedback loop mechanism that regulates both the expression of the cyclin D1 gene and the activity of pRB, thereby contributing to a G1 phase checkpoint control in cycling mammalian cells.


2019 ◽  
Vol 218 (9) ◽  
pp. 2841-2853 ◽  
Author(s):  
Claire Strothman ◽  
Veronica Farmer ◽  
Göker Arpağ ◽  
Nicole Rodgers ◽  
Marija Podolski ◽  
...  

Dynamic organization of microtubule minus ends is vital for the formation and maintenance of acentrosomal microtubule arrays. In vitro, both microtubule ends switch between phases of assembly and disassembly, a behavior called dynamic instability. Although minus ends grow slower, their lifetimes are similar to those of plus ends. The mechanisms underlying these distinct dynamics remain unknown. Here, we use an in vitro reconstitution approach to investigate minus-end dynamics. We find that minus-end lifetimes are not defined by the mean size of the protective GTP-tubulin cap. Rather, we conclude that the distinct tubulin off-rate is the primary determinant of the difference between plus- and minus-end dynamics. Further, our results show that the minus-end–directed kinesin-14 HSET/KIFC1 suppresses tubulin off-rate to specifically suppress minus-end catastrophe. HSET maintains its protective minus-end activity even when challenged by a known microtubule depolymerase, kinesin-13 MCAK. Our results provide novel insight into the mechanisms of minus-end dynamics, essential for our understanding of microtubule minus-end regulation in cells.


2018 ◽  
Vol 16 (38) ◽  
pp. 7029-7035 ◽  
Author(s):  
Lijia Yu ◽  
Nannan Jing ◽  
Zhenjun Yang ◽  
Lihe Zhang ◽  
Xinjing Tang

Photoregulating gene expression using folic acid modified caged siRNA through complex formation of folic acid/folate receptor.


1998 ◽  
Vol 22 (9-10) ◽  
pp. 657-670 ◽  
Author(s):  
E JEONG
Keyword(s):  

2017 ◽  
Vol 114 (46) ◽  
pp. E9863-E9872 ◽  
Author(s):  
Xiaofang Huang ◽  
Xin Zhou ◽  
Xiaoyu Hu ◽  
Amit S. Joshi ◽  
Xiangyang Guo ◽  
...  

Mitochondria constantly divide and fuse. Homotypic fusion of the outer mitochondrial membranes requires the mitofusin (MFN) proteins, a family of dynamin-like GTPases. MFNs are anchored in the membrane by transmembrane (TM) segments, exposing both the N-terminal GTPase domain and the C-terminal tail (CT) to the cytosol. This arrangement is very similar to that of the atlastin (ATL) GTPases, which mediate fusion of endoplasmic reticulum (ER) membranes. We engineered various MFN-ATL chimeras to gain mechanistic insight into MFN-mediated fusion. When MFN1 is localized to the ER by TM swapping with ATL1, it functions in the maintenance of ER morphology and fusion. In addition, an amphipathic helix in the CT of MFN1 is exchangeable with that of ATL1 and critical for mitochondrial localization of MFN1. Furthermore, hydrophobic residues N-terminal to the TM segments of MFN1 play a role in membrane targeting but not fusion. Our findings provide important insight into MFN-mediated membrane fusion.


Structure ◽  
2016 ◽  
Vol 24 (9) ◽  
pp. 1599-1605 ◽  
Author(s):  
Matthias Zebisch ◽  
Verity A. Jackson ◽  
Yuguang Zhao ◽  
E. Yvonne Jones

Sign in / Sign up

Export Citation Format

Share Document