scholarly journals Nucleus Accumbens Cell Type- and Input-Specific Suppression of Unproductive Reward Seeking

Cell Reports ◽  
2020 ◽  
Vol 30 (11) ◽  
pp. 3729-3742.e3 ◽  
Author(s):  
Christopher K. Lafferty ◽  
Angela K. Yang ◽  
Jesse A. Mendoza ◽  
Jonathan P. Britt
Author(s):  
Hee-Dae Kim ◽  
Jing Wei ◽  
Tanessa Call ◽  
Nicole Teru Quintus ◽  
Alexander J. Summers ◽  
...  

AbstractDepression is the leading cause of disability and produces enormous health and economic burdens. Current treatment approaches for depression are largely ineffective and leave more than 50% of patients symptomatic, mainly because of non-selective and broad action of antidepressants. Thus, there is an urgent need to design and develop novel therapeutics to treat depression. Given the heterogeneity and complexity of the brain, identification of molecular mechanisms within specific cell-types responsible for producing depression-like behaviors will advance development of therapies. In the reward circuitry, the nucleus accumbens (NAc) is a key brain region of depression pathophysiology, possibly based on differential activity of D1- or D2- medium spiny neurons (MSNs). Here we report a circuit- and cell-type specific molecular target for depression, Shisa6, recently defined as an AMPAR component, which is increased only in D1-MSNs in the NAc of susceptible mice. Using the Ribotag approach, we dissected the transcriptional profile of D1- and D2-MSNs by RNA sequencing following a mouse model of depression, chronic social defeat stress (CSDS). Bioinformatic analyses identified cell-type specific genes that may contribute to the pathogenesis of depression, including Shisa6. We found selective optogenetic activation of the ventral tegmental area (VTA) to NAc circuit increases Shisa6 expression in D1-MSNs. Shisa6 is specifically located in excitatory synapses of D1-MSNs and increases excitability of neurons, which promotes anxiety- and depression-like behaviors in mice. Cell-type and circuit-specific action of Shisa6, which directly modulates excitatory synapses that convey aversive information, identifies the protein as a potential rapid-antidepressant target for aberrant circuit function in depression.


2008 ◽  
Vol 28 (6) ◽  
pp. 1434-1443 ◽  
Author(s):  
M. W. Shiflett ◽  
R. P. Martini ◽  
J. C. Mauna ◽  
R. L. Foster ◽  
E. Peet ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Briac Halbout ◽  
Andrew T Marshall ◽  
Ali Azimi ◽  
Mimi Liljeholm ◽  
Stephen V Mahler ◽  
...  

Efficient foraging requires an ability to coordinate discrete reward-seeking and reward-retrieval behaviors. We used pathway-specific chemogenetic inhibition to investigate how rats’ mesolimbic and mesocortical dopamine circuits contribute to the expression and modulation of reward seeking and retrieval. Inhibiting ventral tegmental area dopamine neurons disrupted the tendency for reward-paired cues to motivate reward seeking, but spared their ability to increase attempts to retrieve reward. Similar effects were produced by inhibiting dopamine inputs to nucleus accumbens, but not medial prefrontal cortex. Inhibiting dopamine neurons spared the suppressive effect of reward devaluation on reward seeking, an assay of goal-directed behavior. Attempts to retrieve reward persisted after devaluation, indicating they were habitually performed as part of a fixed action sequence. Our findings show that complete bouts of reward seeking and retrieval are behaviorally and neurally dissociable from bouts of reward seeking without retrieval. This dichotomy may prove useful for uncovering mechanisms of maladaptive behavior.


2020 ◽  
Vol 121 ◽  
pp. 104719
Author(s):  
Dusti A. Shay ◽  
Rebecca J. Welly ◽  
Scott A. Givan ◽  
Nathan Bivens ◽  
Jill Kanaley ◽  
...  

2018 ◽  
Vol 115 (5) ◽  
pp. 1111-1116 ◽  
Author(s):  
Mitra Heshmati ◽  
Hossein Aleyasin ◽  
Caroline Menard ◽  
Daniel J. Christoffel ◽  
Meghan E. Flanigan ◽  
...  

Behavioral coping strategies are critical for active resilience to stress and depression; here we describe a role for neuroligin-2 (NLGN-2) in the nucleus accumbens (NAc). Neuroligins (NLGN) are a family of neuronal postsynaptic cell adhesion proteins that are constituents of the excitatory and inhibitory synapse. Importantly, NLGN-3 and NLGN-4 mutations are strongly implicated as candidates underlying the development of neuropsychiatric disorders with social disturbances such as autism, but the role of NLGN-2 in neuropsychiatric disease states is unclear. Here we show a reduction in NLGN-2 gene expression in the NAc of patients with major depressive disorder. Chronic social defeat stress in mice also decreases NLGN-2 selectively in dopamine D1-positive cells, but not dopamine D2-positive cells, within the NAc of stress-susceptible mice. Functional NLGN-2 knockdown produces bidirectional, cell-type-specific effects: knockdown in dopamine D1-positive cells promotes subordination and stress susceptibility, whereas knockdown in dopamine D2-positive cells mediates active defensive behavior. These findings establish a behavioral role for NAc NLGN-2 in stress and depression; provide a basis for targeted, cell-type specific therapy; and highlight the role of active behavioral coping mechanisms in stress susceptibility.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hope Kronman ◽  
Felix Richter ◽  
Benoit Labonté ◽  
Ramesh Chandra ◽  
Shan Zhao ◽  
...  

2019 ◽  
Author(s):  
Anne L. Collins ◽  
Tara J. Aitken ◽  
I-Wen Huang ◽  
Christine Shieh ◽  
Venuz Y. Greenfield ◽  
...  

ABSTRACTBackgroundEnvironmental reward-predictive stimuli provide a major source of motivation for adaptive reward pursuit behavior. This cue-motivated behavior is known to be mediated by the nucleus accumbens core (NAc). The cholinergic interneurons in the NAc are tonically active and densely arborized and, thus, well-suited to modulate NAc function. But their causal contribution to adaptive behavior remains unknown. Here we investigated the function of NAc cholinergic interneurons in cue-motivated behavior.MethodsTo do this, we used chemogenetics, optogenetics, pharmacology, and a translationally analogous Pavlovian-to-instrumental transfer behavioral task designed to assess the motivating influence of a reward-predictive cue over reward-seeking actions in male and female rats.ResultsThe data show that NAc cholinergic interneuron activity is necessary and sufficient to oppose the motivating influence of appetitive cues. Chemogenetic inhibition of NAc cholinergic interneurons augmented cue-motivated behavior. Optical stimulation of acetylcholine release from NAc cholinergic interneurons prevented cues from invigorating reward-seeking behavior, an effect that was mediated by activation of β2-containing nicotinic acetylcholine receptors.ConclusionsThus, NAc cholinergic interneurons provide a critical regulatory influence over adaptive cue-motivated behavior and, therefore, are a potential therapeutic target for the maladaptive cue-motivated behavior that marks many psychiatric conditions, including addiction and depression.


Sign in / Sign up

Export Citation Format

Share Document