scholarly journals Structural Analysis of Receptor Binding Domain Mutations in SARS-CoV-2 Variants of Concern that Modulate ACE2 and Antibody Binding

Cell Reports ◽  
2021 ◽  
pp. 110156
Author(s):  
Dhiraj Mannar ◽  
James W. Saville ◽  
Xing Zhu ◽  
Shanti S. Srivastava ◽  
Alison M. Berezuk ◽  
...  
Author(s):  
Dhiraj Mannar ◽  
James W Saville ◽  
Xing Zhu ◽  
Shanti S. Srivastava ◽  
Alison M. Berezuk ◽  
...  

SummaryThe recently emerged SARS-CoV-2 South African (B. 1.351) and Brazil/Japan (P.1) variants of concern (VoCs) include a key mutation (N501Y) found in the UK variant that enhances affinity of the spike protein for its receptor, ACE2. Additional mutations are found in these variants at residues 417 and 484 that appear to promote antibody evasion. In contrast, the Californian VoCs (B.1.427/429) lack the N501Y mutation, yet exhibit antibody evasion. We engineered spike proteins to express these RBD VoC mutations either in isolation, or in different combinations, and analyzed the effects using biochemical assays and cryo-EM structural analyses. Overall, our findings suggest that the emergence of new SARS-CoV-2 variant spikes can be rationalized as the result of mutations that confer either increased ACE2 affinity, increased antibody evasion, or both, providing a framework to dissect the molecular factors that drive VoC evolution.


2021 ◽  
Author(s):  
Houcemeddine Othman ◽  
Haifa Ben Messaoud ◽  
Oussema Khamessi ◽  
Hazem Ben Mabrouk ◽  
Kais Ghedira ◽  
...  

The Receptor Binding Domain (RBD) of SARS-CoV-2 virus harbors a sequence of Arg-Gly-Asp tripeptide named RGD motif, which has also been identified in extracellular matrix proteins that bind integrins as well as other disintegrins and viruses. Accordingly, integrins have been proposed as host receptors for SARS-CoV-2. The hypothesis was supported by sequence and structural analysis. However, given that the microenvironment of the RGD motif imposes structural hindrance to the protein-protein association, the validity of this hypothesis is still uncertain. Here, we used normal mode analysis, accelerated molecular dynamics microscale simulation, and protein-protein docking to investigate the putative role of RGD motif of SARS-CoV-2 RBD for interacting with integrins. We found, by molecular dynamics, that neither RGD motif nore its microenvironment show any significant conformational shift in the RBD structure. Highly populated clusters were used to run a protein-protein docking against three RGD-binding integrin types, showing no capability of the RBD domain to interact with the RGD binding site. Moreover, the free energy landscape revealed that the RGD conformation within RBD could not acquire an optimal geometry to allow the interaction with integrins. Our results highlighted different structural features of the RGD motif that may prevent its involvement in the interaction with integrins. We, therefore, suggest, in the case where integrins are confirmed to be the direct host receptors for SARS-CoV-2, a possible involvement of other residues to stabilize the interaction.


2021 ◽  
Author(s):  
Takuma Hayashi ◽  
Nobuo Yaegashi ◽  
Ikuo Konishi

AbstractBackgroundInfection with receptor binding domain (RBD) mutant (Y453F) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from farmed minks is known to widely spread among humans.MethodsWe investigated the characteristics of SARS-CoV-2 RBD Y453F mutant using three- dimensional structural analysis. We investigated the effect of the RBD Y453F mutant of SARS-CoV- 2 on neutralizing antibodies in serum derived from Corona virus Disease 2019 (COVID-19) positive patients.ResultsOur studies suggest that virus variants with RBD Y453F mutation partially escaped detection by four neutralizing monoclonal antibodies and neutralizing antibodies in serum.ConclusionsConsequently, raising a concern that infection of SARS-CoV-2 mutants that cause serious symptoms in humans may spread globally.


2021 ◽  
Author(s):  
Takuma Hayashi ◽  
Nobuo Yaegashi ◽  
Ikuo Konishi

Abstract Background: Certain mutant strains of SARS-CoV-2 are known to spread widely among humans, including the receptor binding domain (RBD) mutant, Y453F, from farmed minks, and the RBD mutant, N501Y, a mutation common to three major SARS-CoV-2 subspecies (B.1.1.7, B.1.351, and B.1.1.248). Methods: We investigated the characteristics of the RBD mutants, Y453F and N501Y, using three-dimensional structural analysis. We also investigated the effect of Y453F and N501Y on neutralizing antibodies in serum derived from COVID-19-positive patients. Results: Our results suggest that SARS-CoV-2 subspecies with the RBD mutations Y453F or N501Y partially escaped detection by 4 neutralizing monoclonal antibodies and 21 neutralizing antibodies in serums derived from COVID-19-positive patients.Conclusions: Infection with SARS-CoV-2 subspecies that cause serious symptoms in humans may spread globally.


2021 ◽  
Vol 7 ◽  
Author(s):  
Victor Padilla-Sanchez

SARS-CoV-2 has caused more than 80 million infections and close to 2 million deaths worldwide as of January 2021. This pandemic has caused an incredible damage to humanity being it medically and/or financially halting life as we know it. If it were not enough, the current virus is changing to a more deadly form because of the mutations that are arising on its genome. Importantly, two variants have emerged in recent months, one in United Kingdom and the other in South Africa that are more infectious and escape antibody binding. These two variants have mutations in the receptor binding domain of the spike glycoprotein namely N501Y (UK, SA), K417N (SA) and E484K (SA). Here, I present a structural analysis of spike glycoprotein bound to ACE2 (angiotensin converting enzyme 2) where the mutations have been introduced in silico showing the reason why these variants bind better to ACE2 receptors.


2021 ◽  
Author(s):  
Allison J Greaney ◽  
Andrea N Loes ◽  
Lauren E Gentles ◽  
Katharine HD Crawford ◽  
Tyler N Starr ◽  
...  

The emergence of SARS-CoV-2 variants with mutations in key antibody epitopes has raised concerns that antigenic evolution will erode immunity. The susceptibility of immunity to viral evolution is shaped in part by the breadth of epitopes targeted. Here we compare the specificity of antibodies elicited by the mRNA-1273 vaccine versus natural infection. The neutralizing activity of vaccine-elicited antibodies is even more focused on the spike receptor-binding domain (RBD) than for infection-elicited antibodies. However, within the RBD, binding of vaccine-elicited antibodies is more broadly distributed across epitopes than for infection-elicited antibodies. This greater binding breadth means single RBD mutations have less impact on neutralization by vaccine sera than convalescent sera. Therefore, antibody immunity acquired by different means may have differing susceptibility to erosion by viral evolution.


2010 ◽  
Vol 401 (4) ◽  
pp. 498-503 ◽  
Author(s):  
Yanfeng Zhang ◽  
Garry W. Buchko ◽  
Ling Qin ◽  
Howard Robinson ◽  
Susan M. Varnum

Author(s):  
Akhileshwar Srivastava ◽  
Divya Singh

Presently, an emerging disease (COVID-19) has been spreading across the world due to coronavirus (SARS-CoV2). For treatment of SARS-CoV2 infection, currently hydroxychloroquine has been suggested by researchers, but it has not been found enough effective against this virus. The present study based on in silico approaches was designed to enhance the therapeutic activities of hydroxychloroquine by using curcumin as an adjunct drug against SARS-CoV2 receptor proteins: main-protease and S1 receptor binding domain (RBD). The webserver (ANCHOR) showed the higher protein stability for both receptors with disordered score (<0.5). The molecular docking analysis revealed that the binding energy (-24.58 kcal/mol) of hydroxychloroquine was higher than curcumin (-20.47 kcal/mol) for receptor main-protease, whereas binding energy of curcumin (<a>-38.84</a> kcal/mol) had greater than hydroxychloroquine<a> (-35.87</a> kcal/mol) in case of S1 receptor binding domain. Therefore, this study suggested that the curcumin could be used as combination therapy along with hydroxychloroquine for disrupting the stability of SARS-CoV2 receptor proteins


Sign in / Sign up

Export Citation Format

Share Document