Numerical analysis of oblique impact on reinforced concrete

2005 ◽  
Vol 27 (4) ◽  
pp. 481-492 ◽  
Author(s):  
T.L. Teng ◽  
Y.A. Chu ◽  
F.A. Chang ◽  
H.S. Chin
2019 ◽  
Vol 350 ◽  
pp. 116-127 ◽  
Author(s):  
Akemi Nishida ◽  
Zuoyi Kang ◽  
Minoru Nagai ◽  
Haruji Tsubota ◽  
Yinsheng Li

2020 ◽  
Vol 37 (7) ◽  
pp. 2517-2537
Author(s):  
Mostafa Rezvani Sharif ◽  
Seyed Mohammad Reza Sadri Tabaei Zavareh

Purpose The shear strength of reinforced concrete (RC) columns under cyclic lateral loading is a crucial concern, particularly, in the seismic design of RC structures. Considering the costly procedure of testing methods for measuring the real value of the shear strength factor and the existence of several parameters impacting the system behavior, numerical modeling techniques have been very much appreciated by engineers and researchers. This study aims to propose a new model for estimation of the shear strength of cyclically loaded circular RC columns through a robust computational intelligence approach, namely, linear genetic programming (LGP). Design/methodology/approach LGP is a data-driven self-adaptive algorithm recently used for classification, pattern recognition and numerical modeling of engineering problems. A reliable database consisting of 64 experimental data is collected for the development of shear strength LGP models here. The obtained models are evaluated from both engineering and accuracy perspectives by means of several indicators and supplementary studies and the optimal model is presented for further purposes. Additionally, the capability of LGP is examined to be used as an alternative approach for the numerical analysis of engineering problems. Findings A new predictive model is proposed for the estimation of the shear strength of cyclically loaded circular RC columns using the LGP approach. To demonstrate the capability of the proposed model, the analysis results are compared to those obtained by some well-known models recommended in the existing literature. The results confirm the potential of the LGP approach for numerical analysis of engineering problems in addition to the fact that the obtained LGP model outperforms existing models in estimation and predictability. Originality/value This paper mainly represents the capability of the LGP approach as a robust alternative approach among existing analytical and numerical methods for modeling and analysis of relevant engineering approximation and estimation problems. The authors are confident that the shear strength model proposed can be used for design and pre-design aims. The authors also declare that they have no conflict of interest.


2018 ◽  
Vol 45 ◽  
pp. 00030
Author(s):  
Barbara Kliszczewicz

The paper is dedicated to the analysis interactions between the structure of a field-based cylindrical tank made from reinforced concrete and randomly or unevenly distributed strata of subsoil. The numerical analysis with the use of the Z_Soil software package was carried out to investigate how variable geotechnical parameters demonstrated by subsoil strata with a low bearing capacity and a high deformability influence strain and stress of the tank shell and bottom. The arrangement made up of a cylindrical tank and stratified subsoil (its 3D model) was subjected to the analysis with the consideration of the elastic and plastic properties of soil (the Coulomb-Mohr model). The analysis results, presented as diagrams of the structure deformation and stresses illustrate the uneven settlement of the tank shell and its internal strain.


2015 ◽  
Vol 22 (5) ◽  
pp. 585-596 ◽  
Author(s):  
Damian BEBEN ◽  
Adam STRYCZEK

The paper presents a numerical analysis of corrugated steel plate (CSP) bridge with reinforced concrete (RC) relieving slab under static loads. Calculations were made based on the finite element method using Abaqus software. Two computation models were used; in the first one, RC slab was used, and the other was without it. The effect of RC slab to deformations of CSP shell was determined. Comparing the computational results from two numerical models, it can be concluded that when the relieving slab is applied, substantial reductions in displacements, stresses, bending mo­ments and axial thrusts are achieved. Relative reductions of displacements were in the range of 53–66%, and stresses of 73–82%. Maximum displacements and bending moments were obtained at the shell crown, and maximum stresses and axial thrusts at the quarter points. The calculation results were also compared to the values from experimental tests. The course of computed displacements and stresses is similar to those obtained from experimental tests, although the absolute values were generally higher than the measured ones. Results of numerical analyses can be useful for bridge engineering, with particular regard to bridges and culverts made from corrugated steel plates for the range of necessity of using additional relieving elements.


2021 ◽  
Author(s):  
Zuoyi Kang ◽  
Yukihiko Okuda ◽  
Akemi Nishida ◽  
Haruji Tsubota ◽  
Yinsheng Li

Abstract Most empirical formulas have been proposed to quantitatively evaluate local damage to reinforced concrete (RC) structures caused by a rigid projectile impact. These formulas have been derived from impact tests performed to the target structure with a normal angle, while only a few impact tests involving soft projectile to the target structure have been studied. Recently, we conducted a series of impact tests to evaluate local damage to RC panels subjected to normal and oblique impact due to rigid and soft projectiles. The final goal of our study is to establish a new formula for evaluating local damage to RC structures caused by oblique impact based on experimental and analytical investigation. This paper summarizes the results of experimental and analytical investigation on penetration damage mode to RC panels subjected to normal projectile impact. Through the comparison between experimental and analytical results, the analytical method is validated.


Sign in / Sign up

Export Citation Format

Share Document