scholarly journals Cradle-to-gate life cycle assessment of self-healing engineered cementitious composite with in-house developed (semi-)synthetic superabsorbent polymers

2018 ◽  
Vol 94 ◽  
pp. 166-180 ◽  
Author(s):  
Philip Van den Heede ◽  
Arn Mignon ◽  
Guillaume Habert ◽  
Nele De Belie
2021 ◽  
pp. 100147
Author(s):  
Jerome Ignatius T. Garces ◽  
Ithan Jessemar Dollente ◽  
Arnel B. Beltran ◽  
Raymond R. Tan ◽  
Michael Angelo B. Promentilla

2021 ◽  
Vol 11 (2) ◽  
pp. 700
Author(s):  
Irene A. Kanellopoulou ◽  
Ioannis A. Kartsonakis ◽  
Costas A. Charitidis

Cementitious structures have prevailed worldwide and are expected to exhibit further growth in the future. Nevertheless, cement cracking is an issue that needs to be addressed in order to enhance structure durability and sustainability especially when exposed to aggressive environments. The purpose of this work was to examine the impact of the Superabsorbent Polymers (SAPs) incorporation into cementitious composite materials (mortars) with respect to their structure (hybrid structure consisting of organic core—inorganic shell) and evaluate the microstructure and self-healing properties of the obtained mortars. The applied SAPs were tailored to maintain their functionality in the cementitious environment. Control and mortar/SAPs specimens with two different SAPs concentrations (1 and 2% bwoc) were molded and their mechanical properties were determined according to EN 196-1, while their microstructure and self-healing behavior were evaluated via microCT. Compressive strength, a key property for mortars, which often degrades with SAPs incorporation, in this work, practically remained intact for all specimens. This is coherent with the porosity reduction and the narrower range of pore size distribution for the mortar/SAPs specimens as determined via microCT. Moreover, the self-healing behavior of mortar-SAPs specimens was enhanced up to 60% compared to control specimens. Conclusively, the overall SAPs functionality in cementitious-based materials was optimized.


2019 ◽  
Vol 236 ◽  
pp. 117638
Author(s):  
Alessio Ilari ◽  
Daniele Duca ◽  
Giuseppe Toscano ◽  
Ester Foppa Pedretti

2018 ◽  
Vol 18 (2) ◽  
pp. 413-429 ◽  
Author(s):  
Maristela Gomes da Silva ◽  
Vanessa Gomes ◽  
Marcella Ruschi Mendes Saade

Abstract Life cycle assessment (LCA) provides a comprehensive framework for positioning low energy and global warming potential alternatives regarding Portland cement and concrete. Published LCA work on alkali-activated cements is, however, relatively limited. In this paper, we illustrate how LCA critically supports concrete technological studies in the search for low impact concrete mixes. Previous research on breakwater applications explored replacing a low-clinker Portland cement and natural aggregates with seven different alkali-activated blast furnace slag (bfs) binder systems and with coarse and granulated bfs aggregates. Its outcome suggested a sodium silicate-activated bfs formulation as the best match between concrete properties and environmental regulation compliance. To validate this outcome through LCA, our cradle to gate assessments followed ISO 14044 (INTERNATIONAL…, 2006b) and used Ecoinvent v.2.2 and CML baseline 2001 v.2.05. We adopted the ‘net avoided burden approach’ to handle multifunctionality intrinsic to by-product-based AAC. Whilst sodium silicate-activated mixes rivaled the reference regarding GWP, impacts in several categories were increased. LCA highlighted the implications of driving mix selection by focusing on a single environmental impact category.


Author(s):  
Daniele Landi ◽  
Leonardo Postacchini ◽  
Paolo Cicconi ◽  
Filippo E. Ciarapica ◽  
Michele Germani

In industrialized countries, packaging waste is one of the major issues to deal with, representing around 35% of the total municipal solid waste yearly generated. Therefore, an analysis and an environmental assessment of packaging systems are necessary. This paper aims at analyzing and comparing the environmental performances of two different packaging for domestic hoods. It shows how, through a packaging redesign, it is possible to obtain a reduction of the environmental impacts. This study has been performed in accordance with the international standards ISO 14040/14044, by using attributional Life Cycle Assessment (LCA) from Cradle to Gate. The functional unit has been defined as the packaging of a single household hood. Primary data have been provided by a household hood manufacturer, while secondary data have been obtained from the Ecoinvent database. LCA software SimaPro 8.5 has been used to carry out the life cycle assessment, and ReCiPe method has been chosen for the life cycle impact assessment (LCIA) stage. The results have shown the new packaging model being able to cut down the environmental impacts of approximately 30%. These outcomes may be used by household manufacturers to improve performances and design solutions of their different packaging.


Sign in / Sign up

Export Citation Format

Share Document