scholarly journals Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures

Author(s):  
Xiaodi Dai ◽  
Serdar Aydin ◽  
Mert Yücel Yardimci ◽  
R.E.N. Qiang ◽  
Karel Lesage ◽  
...  
2010 ◽  
Vol 168-170 ◽  
pp. 2008-2012 ◽  
Author(s):  
Yong Hao Fang ◽  
Ya Min Gu ◽  
Qiu Boa Kang

The chemical shrinkages of alkali-activated slag cement (AASC), and the effect of fly ash, MgO burnt at 900°C and the curing solutions were studied. The shrinkages were compared with that of ordinary portland cement (OPC). The results show that the chemical shrinkage of AASC is lower than that of OPC. Adding fly ash and light-burnt MgO reduced the early age chemical shrinkage, while the shrinkage-reduction effect decreased with the age. The alkality of the curing solution has significant effect on the hydration and shrinkage of AASC. The chemical shrinkage of AASC increased with the alkali concentration of the curing solution. The mechanisms of fly ash, MgO and curing solution on the shrinkage were discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Fotini Kesikidou ◽  
Stavroula Konopisi ◽  
Eleftherios K. Anastasiou

This study investigated the use of concrete sludge, a by-product of the ready-mix concrete industry, in combination with high-calcium fly ash in binary cementless binders. Concrete sludge was used in substitution rates ranging from 0% to 60% in test fly ash-based mortars to determine potential synergy. The mortars were tested for fresh and hardened properties; workability, viscosity, strength development, open porosity, early-age shrinkage, and analytical tests were carried out. A mortar with 50% fly ash and 50% limestone filler as binders was used for comparison purposes. Furthermore, a series of mortars with fly ash and concrete sludge were alkali-activated in order to determine potential strength gain. In the activated mortars, two fractions of concrete sludge were used, under 75 μm and 200 μm, due to different silicon oxide contents, while one mortar was cured at 40°C to investigate the effect of heating on alkali activation. Results show that sludge contributes to the formation of C-S-H and strength development when used in combination with high-calcium fly ash even at high replacement rates. The alkali activation of fly ash-concrete sludge system contributed to early-age strength development and to early-age shrinkage reduction.


2020 ◽  
Vol 260 ◽  
pp. 120510 ◽  
Author(s):  
Abdelilah Aboulayt ◽  
Faten Souayfan ◽  
Emmanuel Roziere ◽  
Reda Jaafri ◽  
Anass Cherki El Idrissi ◽  
...  

2013 ◽  
Vol 96 (3) ◽  
pp. 900-906 ◽  
Author(s):  
Shane Donatello ◽  
Ana Fernández-Jimenez ◽  
Angel Palomo

2016 ◽  
Vol 53 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Sol-Moi Park ◽  
Jeong-Gook Jang ◽  
Gwang-Mok Kim ◽  
Haeng-Ki Lee

2009 ◽  
Vol 417-418 ◽  
pp. 721-724 ◽  
Author(s):  
Kyung Taek Koh ◽  
Su Tae Kang ◽  
Gum Sung Ryu ◽  
Hyun Jin Kang ◽  
Jang Hwa Lee

This study investigates the effects of alkaline activators and curing method on the compressive strength of mortar for the development of cementless alkali-activated concrete using 100% of fly ash as binder. Results reveal that the compressive strength improved according to the increase of the molar concentration of NaOH. In addition, molar ratio Na2O to SiO2 of 1.12 activated the reaction of fly ash with Si and Al constituents and resulted in the most remarkable development of strength. In the case of mortar requiring high strength at early age, higher curing temperatures appeared to be advantages. Curing at 60°C during 48 hours is recommended for requiring high strength at age 28days. Moreover, performing atmospheric curing after high temperature curing appeared to be more effective for the development of strength than water curing. Based on these results, it has been analyzed that alkaline activators fabricated with proportions of 1:1 of 9M NaOH and sodium silicate should be used and that atmospheric curing should be performed after curing at 60°C during 48 hours to produce high strength alkali-activated mortar exhibiting compressive strength of 70MPa at age 28 days.


2014 ◽  
Vol 54 (5) ◽  
pp. 348-351
Author(s):  
Vít Šmilauer ◽  
Oleg Babchenko ◽  
Štepán Potocký ◽  
Alexander Kromka

Plasma treatment offers several applications in material science. In this research, the potential of plasma treatment is explored on the hydration of hydrophilic CNT-enriched cement and hydrophilic fly ash. The evolution of the hydration heat and the compressive strength show that a hydrophilic surface slightly accelerates the early-age hydration kinetics, while the long-term properties remain unchanged.


Sign in / Sign up

Export Citation Format

Share Document