Alkali activated waste fly ash as sustainable composite: Influence of curing and pozzolanic admixtures on the early-age physico-mechanical properties and residual strength after exposure at elevated temperature

2018 ◽  
Vol 132 ◽  
pp. 161-169 ◽  
Author(s):  
Messina ◽  
Ferone ◽  
Colangelo ◽  
Roviello ◽  
Cioffi
Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1473
Author(s):  
Jun Zhao ◽  
Kang Wang ◽  
Shuaibin Wang ◽  
Zike Wang ◽  
Zhaohui Yang ◽  
...  

This paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature. Compressive strengths of C30, C40 and C50 geopolymer concrete, mortar and paste show incremental improvement then followed by a gradual reduction, and finally reach a relatively consistent value with an increase in exposure temperature. The higher slag content in the geopolymer reduces residual strength and the lower exposure temperature corresponding to peak residual strength. Resistance to elevated temperature of C40 geopolymer concrete, mortar and paste is better than that of ordinary concrete, mortar and paste at the same grade. XRD, TGA and SEM analysis suggests that the heat resistance of C–S–H produced using slag is lower than that of sulphoaluminate gel (quartz and mullite, etc.) produced using fly ash. This facilitates degradation of C30, C40 and C50 geopolymer after exposure to elevated temperatures.


2019 ◽  
Vol 23 (9) ◽  
pp. 3875-3888 ◽  
Author(s):  
Anant Lal Murmu ◽  
Anamika Jain ◽  
Anjan Patel

2018 ◽  
Vol 761 ◽  
pp. 73-78 ◽  
Author(s):  
Matej Špak ◽  
Pavel Raschman

Alkali-activated materials based on fly ash are widely developed and also produced on the present. Some of fly ashes are not suitable for production of alkali-activated materials because of their inconvenient chemical composition. Alumina-silicates are the most important components that are needed to accomplish the successful reaction. The proper content of amorphous phase of alumina-silicates and its proportion as well should be provided for the final composition of alkali-activated materials. The influence of pure aluminum oxide powder as well as raw milled natural perlite on mechanical properties and durability of alkali-activated mortars was investigated. These minerals were used as partial replacement of fly ash coming from black coal combustion. In addition, the mortars were prepared by using different alkali activators.


2021 ◽  

Concrete is the most versatile, durable and reliable material and is the most used building material. It requires large amounts of Portland cement which has environmental problems associated with its production. Hence, an alternative concrete – geopolymer concrete is needed. The general aim of this book is to make significant contributions in understanding and deciphering the mechanisms of the realization of the alkali-activated fly ash-based geopolymer concrete and, at the same time, to present the main characteristics of the materials, components, as well as the influence that they have on the performance of the mechanical properties of the concrete. The book deals with in-depth research of the potential recovery of fly ash and using it as a raw material for the development of new construction materials, offering sustainable solutions to the construction industry.


2015 ◽  
Vol 244 ◽  
pp. 140-145 ◽  
Author(s):  
Matej Špak ◽  
Pavel Raschman

Fly ash is a well utilizable secondary raw material for the production of alkali activated construction materials. It is a significant alumina-silicates source suitable for the chemical reaction resulting in hardened composites. Physical and chemical properties of fly ashes as a co-product of coal burning mainly depend on characteristics of coal, burning temperature and combustion conditions. High variability of the properties of fly ash causes an uncertainty in the properties of alkali activated mortars. Time behaviour of the composition of the fly ash produced in a heating plant located in Košice, Slovakia as well as leaching behaviour of both alumina and silica from particular batches during one-year period was documented. Leaching tests were carried out using the distilled water and alkali solutions with three different concentrations. Both compressive and tensile strengths of alkali activated mortars were measured, and the correlation between the mechanical properties of hardened mortars and the chemical composition of fly ashes as well as their leaching characteristics was investigated.


2010 ◽  
Vol 113-116 ◽  
pp. 1013-1016 ◽  
Author(s):  
Zhi Min He ◽  
You Jun Xie ◽  
Guang Cheng Long ◽  
Jun Zhe Liu

In precast concrete elements manufacturing, steam-cured concrete incorporating 30% fly ash encountered the problem of a too low demoulding compressive strength. To resolve it, this paper developed a new steam-cured concrete (AFSC) incorporating fly ash and a chemical activator. Experiments were conducted to investigate the mechanical properties of AFSC. The corresponding mechanism was also discussed by testing the microstructure of concrete. Results indicate that the demoulding compressive strength of AFSC can meet production requirements, and compressive and flexure strength of AFSC at later ages increase well. Compared with that of ordinary steam-cured concrete, AFSC has a higher tensile strength, and the capability of AFSC to resist cracks is enhanced remarkably. At an early age, addition of the chemical activator can distinctly accelerate the extent of hydration of the fly ash cement systems, and thus the microstructure of concrete becomes denser.


2010 ◽  
Vol 168-170 ◽  
pp. 2008-2012 ◽  
Author(s):  
Yong Hao Fang ◽  
Ya Min Gu ◽  
Qiu Boa Kang

The chemical shrinkages of alkali-activated slag cement (AASC), and the effect of fly ash, MgO burnt at 900°C and the curing solutions were studied. The shrinkages were compared with that of ordinary portland cement (OPC). The results show that the chemical shrinkage of AASC is lower than that of OPC. Adding fly ash and light-burnt MgO reduced the early age chemical shrinkage, while the shrinkage-reduction effect decreased with the age. The alkality of the curing solution has significant effect on the hydration and shrinkage of AASC. The chemical shrinkage of AASC increased with the alkali concentration of the curing solution. The mechanisms of fly ash, MgO and curing solution on the shrinkage were discussed.


Author(s):  
Hyuk Lee ◽  
Vanissorn Vimonsatit

This paper presents the mechanical properties of fly ash-based alkali-activated cement (AAC). A statistical analysis method was used to determine the effect of mix proportion parameters on the dry density and compressive strength of fly ash-based AAC pastes and mortars. For that purpose, sample mixtures were designed according to Taguchi’s experimental design method, i.e., in a L9 orthogonal array. Four factors were selected: “silica fume content” (SF), “sand to solid ratio” (s/c), “liquid to solid ratio” (l/s), and “superplasticiser content” (SP). The experimental results were analysed by using signal to noise for quality control of each mixture, and analysis of variance (ANOVA) was used to determine the significant effect on the compressive strength of fly ash-based AAC. Furthermore, a regression-analysis method was used to predict the compressive strength according to the variation of the four factors. Results indicated that silica fume is the most influencing parameter on compressive strength, which could be decreased by superplasticiser and l/s ratio. There is no significant effect of sand-to-cementitious ratio on compressive strength of fly ash-based AAC. The dry density decreases as the sand-to-cementitious ratio is decreased. The increasing l/s ratio and superplasticiser dosage could further decrease the dry density of fly ash-based AAC.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Fotini Kesikidou ◽  
Stavroula Konopisi ◽  
Eleftherios K. Anastasiou

This study investigated the use of concrete sludge, a by-product of the ready-mix concrete industry, in combination with high-calcium fly ash in binary cementless binders. Concrete sludge was used in substitution rates ranging from 0% to 60% in test fly ash-based mortars to determine potential synergy. The mortars were tested for fresh and hardened properties; workability, viscosity, strength development, open porosity, early-age shrinkage, and analytical tests were carried out. A mortar with 50% fly ash and 50% limestone filler as binders was used for comparison purposes. Furthermore, a series of mortars with fly ash and concrete sludge were alkali-activated in order to determine potential strength gain. In the activated mortars, two fractions of concrete sludge were used, under 75 μm and 200 μm, due to different silicon oxide contents, while one mortar was cured at 40°C to investigate the effect of heating on alkali activation. Results show that sludge contributes to the formation of C-S-H and strength development when used in combination with high-calcium fly ash even at high replacement rates. The alkali activation of fly ash-concrete sludge system contributed to early-age strength development and to early-age shrinkage reduction.


Sign in / Sign up

Export Citation Format

Share Document