Experimental investigation and prediction of elastic modulus of ultra-high performance concrete (UHPC) based on its composition

2020 ◽  
Vol 138 ◽  
pp. 106241
Author(s):  
Xue Ouyang ◽  
Caijun Shi ◽  
Zemei Wu ◽  
Kai Li ◽  
Bo Shan ◽  
...  
2008 ◽  
Vol 385-387 ◽  
pp. 701-704 ◽  
Author(s):  
Jung Jun Park ◽  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Sung Wook Kim

Silica fume constitutes an element of extreme importance in improving the strength and fluidity of UHPC. The adopted amount of silica fume generally is generally exceeding 25% of cement in weight but the influence of this amount on the properties of UHPC is still remaining as a domain to be investigated. Accordingly, this paper investigates the effects of the amount of silica fume on the mechanical characteristics of the fluidity, compressive strength, elastic modulus and flexural strength and on the micro structure of UHPC by means of SEM and MIP. Results revealed that adequate amount of silica fume is improving the fluidity and strength. MIP tests demonstrated that such improvement is brought by the increase of hydrates due to the pozzolan reaction and the effective densification inside concrete due to the filler. It seemed also that similar mechanical characteristics can be obtained for a volumetric ratio to cement ranging between 10 and 25%.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6354
Author(s):  
Fanghong Wu ◽  
Yanqin Zeng ◽  
Ben Li ◽  
Xuetao Lyu

This paper presents an experimental investigation of flexural behavior of circular ultra-high-performance concrete with coarse aggregate (CA-UHPC)-filled steel tubes (CA-UHPCFSTs). A total of seven flexural members were tested under a four-point bending load. The failure modes, overall deflection curves, moment-versus-curvature relationships, moment-versus-strain curves, strain distribution curves, ductility, flexural stiffness and ultimate flexural capacity were evaluated. The results indicate that the CA-UHPCFSTs under bending behaved in a good ductile manner. The CA-UHPC strength has a limited effect on the ultimate flexural capacity, while the addition of steel fiber can improve the ultimate flexural capacity. Increasing the steel tube thickness leads to higher flexural stiffness and ultimate flexural capacity. There is a significant confinement effect between the steel tube and the CA-UHPC core in the compressive zone and centroidal plane after the specimen enters the elastic-plastic stage, while the confinement effect in the tensile zone is minimal. Moreover, the measured flexural stiffness and ultimate flexural capacity were compared with the predictions using various design specifications. Two empirical formulas for calculating the initial and serviceability-level flexural stiffness of CA-UHPCFSTs are developed. Further research is required to propose the accurate design formula for the ultimate flexural capacity of CA-UHPCFSTs.


Sign in / Sign up

Export Citation Format

Share Document